Matrix Factorization Example

Set up a 3x3 matrix

```
% Define the initial 3x3 matrix
A = [2 1 1;
    4 -6 0;
    -2 7 2]

A = 3x3
    2    1    1
    4    -6    0
    -2    7    2
```

First: A=LU

0

Elimination Matrices

-8 -2

3

8

```
E21 = [1 0 0; -2 1 0; 0 0 1];

E31 = [1 0 0; 0 1 0; 1 0 1];

% Need to apply these to A to know the next steps:

E31*E21*A

ans = 3×3
2 1 1
```

```
E32 = [ 1 0 0; 0 1 0; 0 1 1];
U = E32 * (E31 * (E21 * A))
```

```
% Construct L from thin air
% Place multipliers in their positions
L = [1 0 0; 2 1 0; -1 -1 1]
```

```
% Check that A=LU checkLU = A - L * U; disp(checkLU);
```

```
0 0 0
0 0 0
0 0 0
```

Where did this come from?

```
% In fact, L "undoes" elimination:
E32inv = [ 1 0 0; 0 1 0; 0 -1 1];
E31inv = [1 0 0; 0 1 0; -1 0 1];
E21inv = [1 0 0; 2 1 0; 0 0 1];
alt_L = E21inv * E31inv * E32inv
alt_L = 3×3
1 0 0
```

```
-1 -1 1
% How do we know this is always possible?
% How do we know L is always lower triangular?
```

Second: A=LDU

1

2

```
A_reconstructed = 3\times3
2 1 1
4 -6 0
-2 7 2
```

```
check = A - A_reconstructed
```

```
check = 3×3
0 0 0
0 0 0
0 0 0
```