
This quiz has two problems worth 10 points.

1. (4 points) The vectors \mathbf{v} and \mathbf{w} are drawn below. Sketch and label the vectors $\mathbf{v} + \mathbf{w}$ and $\mathbf{v} - \mathbf{w}$.

2. (6 points)

(a) Express the question below as two equations with coefficients c and d.

Is there a linear combination of $\mathbf{v} = \begin{bmatrix} 9 \\ -3 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ that equals $\mathbf{b} = \begin{bmatrix} 7 \\ -7 \end{bmatrix}$?

Are there coefficients c and d so that

$$c\begin{bmatrix} 9 \\ -3 \end{bmatrix} + d\begin{bmatrix} -5 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ -7 \end{bmatrix}$$
?

(b) Solve for c and d or explain why no solution exists.

Turn the vector equation into a system of linear equations:

$$0 \quad 9c - 5d = 7$$

$$9c - 5d = 7$$

 $-3c + 3d = -7$
So $9c - 5d = 7$
 $-9c + 9d = -2$

$$\frac{-9c + 9d = -21}{4d = -14} \text{ or } d = \frac{-7}{2}$$

So, plug into equation 2:

, plug into equation 2:

$$-3c + 3(-\frac{7}{2}) = -7$$
 So $c = \frac{1}{3}(\frac{7}{2}) = \frac{-7}{6} = c$
 $-\frac{21}{2} + \frac{14}{2} = 3c$

So
$$C = \frac{1}{3}(\frac{7}{2}) = \frac{-7}{6} = C$$