This quiz has two problems worth 10 points.

1. (3 points) Let 
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \\ 3 & 0 & 8 \end{bmatrix}$$
 and  $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ . Write the matrix  $\cdot$  vector product  $A\mathbf{x}$  as:

(a) a linear combination of the columns of A

$$\times \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix}$$

(b) a single vector

$$\begin{bmatrix} x - y + 2z \\ y + 3z \\ 3x + 8z \end{bmatrix}$$

(c) as dot products of rows of A

as dot products of rows of A

$$\begin{bmatrix}
row 1 & \times \\
row 2 & \times \\
row 3 & \times
\end{bmatrix} = \begin{bmatrix}
(1,-1,2) & (\times, y, 2) \\
(0,1,3) & (\times, y, 2) \\
(3,0,8) & (\times, y, 2)
\end{bmatrix}$$

2. (7 points) Let 
$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 and  $\mathbf{w} = \begin{bmatrix} -4 \\ 1 \\ -2 \end{bmatrix}$ 

(a) Is the angle between **v** and **w** acute, right, or obtuse? Explain your answer. (Note you were not asked to find the angle.)

$$V \cdot W = 1(-4) + 2(-2) = -4 + 2 - 4 = -6$$
  
Since  $-6 \times 0$ , the angle is obtuse.

(b) Find a **nonzero** vector that is perpendicular to **v** and show that you are correct.

Pick 
$$\vec{a} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
.  $\vec{a} \cdot \vec{v} = 0$ 

(c) Find a **unit** vector  $\mathbf{u}$  in the same direction as vector  $\mathbf{v}$ .

$$||\vec{v}|| = \sqrt{|\vec{v}|^2 + 2^2 + 2^2} = 3$$

$$\vec{\lambda} = \frac{1}{\|\vec{v}\|} \vec{v} = \frac{1}{3} (1,2,2) = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$

(d) Find a vector **a** such that the set of vectors **v**, **w**, and **a** are **dependent**.

$$\begin{array}{ccc}
\text{Choose } \vec{a} = \vec{v} + \vec{w} = \begin{bmatrix} -3 \\ 3 \\ 0 \end{bmatrix}
\end{array}$$