This quiz has six problems worth 10 points.

Below is the matrix A and its reduced row echelon form, R. Use these to answer the following questions.

$$A = \begin{bmatrix} 2 & -2 & 4 & 3 \\ 4 & -8 & 10 & 7 \\ 6 & 14 & 2 & 4 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 3/2 & 5/4 \\ 0 & 1 & -1/2 & -1/4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. (1 pt) What is the rank of A? 2
- 2. (1 pt) What are the *free variables* in this case? (Assume $\mathbf{x} = (x_1, x_2, x_3, x_4)$.)
- 3. (2 pts) For each free variable, find a special solution.

for
$$x_3$$
: $x_3=1$, $x_4=0$

$$x_1 + \frac{3}{2} = 0 \quad x_1 = -\frac{3}{2}$$

$$x_2 - \frac{1}{2} = 0 \quad x_2 = \frac{1}{2}$$

$$x_3 = \begin{bmatrix} -3/2 \\ \frac{1}{2} \\ 1 \end{bmatrix}$$

$$x_4 = 0 \quad x_4 = 0$$

$$x_1 + \frac{5}{4} = 0 \quad x_1 = -\frac{5}{4}$$

$$x_2 - \frac{1}{4} = 0 \quad x_2 = \frac{1}{4}$$

$$x_3 = 0, x_4 = 1$$

$$x_1 + \frac{5}{4} = 0 \quad x_1 = -\frac{5}{4}$$

$$x_2 - \frac{1}{4} = 0 \quad x_2 = \frac{1}{4}$$

$$x_3 = 0, x_4 = 1$$

$$x_1 + \frac{5}{4} = 0 \quad x_1 = -\frac{5}{4}$$

$$x_2 - \frac{1}{4} = 0 \quad x_2 = \frac{1}{4}$$

$$x_3 = 0, x_4 = 1$$

$$x_1 + \frac{5}{4} = 0 \quad x_1 = -\frac{5}{4}$$

$$x_2 - \frac{1}{4} = 0 \quad x_2 = \frac{1}{4}$$

4. (2 pts) Efficiently and precisely describe $\mathcal{N}(A)$, the null space of A.

$$A = \begin{bmatrix} 2 & -2 & 4 & 3 \\ 4 & -8 & 10 & 7 \\ 6 & 14 & 2 & 4 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 3/2 & 5/4 \\ 0 & 1 & -1/2 & -1/4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

5. (2 pts) Efficiently and precisely describe C(A), the column space of A. (Note that A and R are copied above.)

$$C(A) = \begin{cases} c \begin{bmatrix} 2 \\ 4 \end{bmatrix} + d \begin{bmatrix} -2 \\ -8 \\ 14 \end{bmatrix} : c, d real number \end{cases}$$

$$= all linear combinations of
$$\begin{bmatrix} 2 \\ 4 \end{bmatrix} and \begin{bmatrix} -2 \\ -8 \\ 14 \end{bmatrix}$$$$

6. (2 pts) Below is the augmented matrix $[A \mathbf{b}]$ for the system of equations $A\mathbf{x} = \mathbf{b}$ and its reduced row echelon form, R. Find the complete solution to the system $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 2 & -2 & 4 & 3 & 6 \\ 4 & -8 & 10 & 7 & 8 \\ 6 & 14 & 2 & 4 & 38 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 3/2 & 5/4 & 4 \\ 0 & 1 & -1/2 & -1/4 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $x_p = a$ particular solution is $x_1 = 4$, $x_2 = 1$, $x_3 = x_4 = 0$.

complete =
$$\begin{cases} \begin{bmatrix} 4 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \begin{bmatrix} -3/2 \\ 1/2 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} -5/4 \\ 1/4 \\ 0 \\ 1 \end{bmatrix}$$
: c, d real solution numbers