This quiz has six problems worth 10 points.

- 1. (4 points) Give examples of matrices for which the number of solutions to Ax = b is
 - (a) 0 or 1, depending on b. Explain your reasoning.

[10]	A pivot in every column means that it it
01	has a solution, that solution is unique.
	But a now of zeros means there may not be
	a solution (eg b=[9])
1	a 2011/14 (54 P-[1])

(b) 0 or ∞ , depending on b. Explain your reasoning.

	The row of Zeros means there may not be a
1017	Solution. The free column (col3) means
000	that there will always be an infinite number
	of solutions if solutions exist.
	EM SOLUTIONS LYST,

- 2. (4 points) Find a basis for each subspace below.
 - (a) The subspace of 2×2 matrices consisting of all upper triangular matrices.

$$[3b] = a[30] + b[3] + c[30]$$

basis = $[30], [30], [30]$

(b) The subspace of \mathbb{R}^4 consisting of all vectors orthogonal to (1,1,0,0) and (1,0,1,0).

basis
$$\pm \left\{ \begin{bmatrix} -1 \\ -0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

If W=1, then Y= y=-1.

- 3. (2 points) [Fill in the blank.] Suppose A is an $m \times n$.
 - (a) The vector **d** is in the row space of A when $A^TX = d$ has a solution.
 - (b) The row space of A is a subspace of \mathbb{R}^n