This quiz has six problems worth 10 points.

- 1. (8 points) Let $A = \begin{bmatrix} 1 & 0 & 2 & -1 & 0 \\ 2 & 1 & 3 & 1 & 2 \\ 2 & 3 & 1 & 7 & 5 \\ 1 & -1 & 3 & -4 & -5 \end{bmatrix}$ and $\operatorname{rref}(A) = R = \begin{bmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
 - (a) Find a basis for C(A).

(b) Find a basis for N(A).

(c) Find a basis for $C(A^T)$.

(d) Could the vector $\mathbf{v}=(-15,10,-3,1)$ be a basis for the left null space of A? Explain your reasoning.

2.	(2 points)	[Fill in the	e blank.] Tl	ne vectors	$\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3,\cdots$	$\cdots \mathbf{a}_k$ form	a basis fo	r the vecto	or space S if