Fall 2024

Math F314X

Linear Algebra: Final Exam

Rules:

» Show your work.

Name: So\ \A."\'-l ans

* You may have a single handwritten sheet of paper with writing on one side.

* You may use a calculator

Problem Possible Score

1 16
2 20
3 20
4 15
5 11
6 10
7 8

Total 100







1. (16 points)

0 2 1
This should involve both calculations and an explanation of why that calculation allows one to
conclude the vectors are linearly independent.
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(a) Demonstrate that the vectors a; = [0] ,ag = [1] ,a3 = {1] are linearly independent.
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(o) Demonstrate the vectors v; = 3 , Vg = _11 ,U3 = i L= | are linearly depen-
0 0 1 0
dent by writing one vector as a linear combination of the others.
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2. (20 points) Let S be the system of equations: To
r1 + X2

. Observe that this system
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has no exact solution.

(a) Write this system in the matrix form Az = b.
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(d) Find Af, the pseudoinverse of A. _
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For reference, S is: T9
r1 + 2
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(e) Find z, the least squares approximate solution to the system S.
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(f) Suppose someone chooses their approximate solution to S to be z = H .

i. Explain (in words and/or correct mathematical notation) why z is a better approximate
solution than z.
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ii. Complete the calculatlon that demonstrates your descrlptlon above is correct.
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through part of the Gram-Schmidt algorithm.

3. (20 points) Let a3

0

(@) Find ¢1, the first vector obtained via Gram-Schmidt.
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1| . (Note that the as on this page are the same as on the
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(C) Let A = [a1 as (13] = |:

provious page.
i. Determine the @, in the (Q R-factorization of A.
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ii. Find the second row of R in the Q R-factorization of A. That is, you should find Rs1, Ras,
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iii. Is A invertible? Justify your conclusion.
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4. (15points) LetC = | 1 2
2

S = O

] . You must show your work to earn full points.
-1

(a) Find all eigenvalues of the matrix C.
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(b) For the largest eigenvalue of C, find an associated eigenvector.
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(c) Suppose that v is the eigenvector you found in part (b) above. Determine C'0v.
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5. (11 points)

(a) Suppose M is an orthogonal n x n matrix.
i. Can we draw any conclusions about the null space of M'? Explain and justify.

The hull space 75 E‘bg _
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ii. Can we draw any conclusion about whether the rows of M are linearly independent?
Explain and justify.

The rpws ave [‘muwlj inaﬁcpw,éudé.ée.cauw
G 15 i nerhible &n«ﬁ) -Wsu.s/ has a rfslxé ynLete.

T}’u/l_SI ,—’5 nowS ax [;M/\[y ch{Pe,hchn, _

2 -2 1 2/3 —2/3 1/3
(o) The matrix M = 1|1 2 2| =

1/3  2/3 2/3] is orthogonal. Write the vector
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v = (1,2,0) as a linear combination of the columns of M.
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6. (10 points) Let A= |0 5
4 2

(a) Explain why A cannot have a right inverse.

The rows of A are liyuz,a./lj d.zpwchwé.

(b) Find a left inverse of A.
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(c) Is your answer in part (b) unique? Justify your conclusion.
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7. (8 points) Determine whether each function below is a linear function f : R? — R3. If f is linear,
show this by writing f(z) = Ax for an appropriate matrix A. If f is not linear, find particular vectors
and scalars for which f fails to be linear.

(a) f(xla x2) — (2x1;xz’ *11;’212’ m;mz)
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(b) f(w1,22) = (14 21,2+ 22,0)
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