MATH 314 LINEAR ALGEBRA FALL 2025 MIDTERM 2

Name:	Time: 60 minutes
i tallic.	inite of initiates

Instructions: Show all work for full credit. Partial credit will be awarded for correct methods even if the final answer is incorrect. No book, notes, electronics, calculator, or internet access is permitted.

problem	points	score
1	16	
2	15	
3	15	
4	15	
5	16	
	+ 3 EC	
6	23	
total	100	

(1) (16 pts) Below is the matrix **A** and its reduced row echelon form, **U**.

$$A = \begin{bmatrix} 2 & -6 & 0 & 4 & 0 \\ -1 & -3 & 2 & -4 & 0 \\ 2 & -6 & 2 & 2 & 0 \\ 1 & -3 & 4 & -2 & 2 \end{bmatrix} \longrightarrow R = \begin{bmatrix} 1 & -3 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) (4 pts) Find a **basis** for the row space of \mathbf{A} , $C(\mathbf{A}^T)$, and state its **dimension**.

(b) (4 pts) Find a **basis** for the column space of A, C(A), and state its **dimension**.

(c) (6 pts) Find a basis for the null space of \mathbf{A} , $N(\mathbf{A})$, and state its dimension.

- (d) (1 pt) State the **dimension** of the left null space of \mathbf{A} , $N(\mathbf{A}^T)$.
- (e) (2 pts) Does the left null space contain any nonzero vector? If so, find one. If not, explain why.

(2) (15 pts) Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$:

$$2x_1 + 3x_2 + 3x_3 = 9$$
$$2x_1 + 6x_2 + x_3 - x_4 = 27$$
$$-4x_1 - 3x_2 - 7x_3 - x_4 = -3$$

Here is the row-reduced echelon form of the augmented matrix:

$$[A \ \mathbf{b}] \longrightarrow [R \ \mathbf{d}] = \begin{bmatrix} 1 & 0 & 0 & 1/2 & 3 \\ 0 & 1 & 0 & 1/3 & 4 \\ 0 & 0 & 1 & 0 & -3 \end{bmatrix}$$

What is the general solution of the system? Show your work.

(3) (15 pts) Let S be a 1-dimensional subspace of \mathbb{R}^2 spanned by the vector $\mathbf{a} = (3, 1)$. (a) (6 pts) Find the projection, \mathbf{p} , of $\mathbf{b} = (-1, 1)$ onto S and the error, \mathbf{e} .

(b) (4 pts) On the same set of axes, draw and label \mathbf{s} , \mathbf{b} , \mathbf{p} , and \mathbf{e} .

(c) (5 pts) Compute P, the matrix of the projection.

(4) (15 pts) Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by:

$$\mathbf{a}_1 = (1, 1, 0, 0), \ \mathbf{a}_2 = (0, 2, 1, 0), \ \mathbf{a}_3 = (1, 1, 3, 1)$$

(5) (16 pts) An experiment produced the following data points in the (x, y) plane:

We would like to find the line, y = mx + b, of best fit.

(a) (3 pts) Write down the system of equations we would like to solve in order to find m and b. That is, this system would have a solution if all points were on a common line.

(b) (2 pts) Rewrite the system of equations in part (a) in vector form. (We typically write this as $\mathbf{A}\mathbf{x} = \mathbf{b}$) So, state the coefficient matrix \mathbf{A} , the variable vector \mathbf{x} and the constant vector \mathbf{b} .

- (c) (2 pts) Is your vector **b** in the column space of your matrix **A**? Give a very brief explanation.
- (d) (6 pts) Write down the system of equations we will actually solve in order to find the line of best fit. These are also called the *normal* equations.

(e) (3 pts) A solution to the normal equations produces the slope and y-intercept of the line of best fit. In what sense is it best? That is, what quantity is minimized? You should be able to give a mathematical formula here.

(f) (3 pts extra credit) We typically write the least squares solution as $\hat{\mathbf{x}}$, which in this case is (7.7, -1.6). Translate this least squares solution into a "projection" problem. That is, somehow $\hat{\mathbf{x}}$ should tell you how to find the projection, **p**, of some vector **b** onto some subspace S. What are **p**, **b** and S?

(6) (40 pts) Short Answer

MATH 314 LINEAR ALGEBRA

(a) (3 pts) Do the vectors in \mathbb{R}^3 whose entries add up to 1 form a subspace of \mathbb{R}^3 ? Justify your conclusion.

(b) (3 pts) What does it mean for the vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , and \mathbf{a}_4 to be linearly independent? (Give a precise mathematical explanation.)

MATH 514 BINEAR ADGEDRA FALL 2025 MIDTERM 2
(c) (4 pts) Suppose that \mathbf{P} is a projection matrix. What is \mathbf{P}^2 and why?
(d) (3 pts) Briefly explain why the row space and the null space of the matrix ${\bf A}$ are orthogonal.
(e) (3 pts) Determine if the following statement is true or false. Justify your conclusion. If B is not invertible, then AB is not invertible.
(f) (3 pts) Suppose E_{ij} is an elimination matrix. Is it possible to determine $\det(E_{ij})$? Explain your answer briefly.
 (g) (4 pts) Suppose A is a 3 × 4 matrix and the vector a forms a basis for the null space of A. (i) What is the rank of A?

(ii) What, if anything, can you determine about solutions to the system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$?

Explain your answer.