(1) Suppose $f: \mathbf{R}^3 \to \mathbf{R}^2$ is a linear transformation and

$$f(1,0,0) = (1,-3), f(0,1,0) = (-2,6), f(0,0,1) = (0,0).$$

(a) Find f(3, 4, 5).

(b) Find a matrix A such that $f(\mathbf{x}) = A\mathbf{x}$, for all \mathbf{x} in \mathbf{R}^3 .

(c) Find the kernel and range of f

- (2) Suppose the function $g: \mathbb{R}^2 \to \mathbb{R}^2$ is defined as $g(x_1, x_2) = (2x_1 + 3x_2, x_1 + 4x_2)$.
 - (a) Compute g(3,1).

(b) Show that g is a linear transformation by finding a matrix A such that $f(\mathbf{x}) = A\mathbf{x}$, for all \mathbf{x} in \mathbf{R}^2 .

(c) Compute g(3,-1) and g(1,1). What does this tell you about matrix A? (List as many answers to this question as you can think up!)

(d) Find a (different) matrix, say B, such that $g(\mathbf{x}) = B\mathbf{x}$ under the assumption that all vectors in \mathbf{R}^2 are written in terms of the basis: $\mathbf{v}_1 = (3, -1), \mathbf{v}_2 = (1, 1)$.

(e) Use the matrix B to find the image of $\mathbf{w}=(3,1)$ under g and confirm it is the same as your computation in part (a).