- 1. Text 12.2 Modified. Suppose that the $m \times n$ matrix *Q* has orthonormal columns, say $q_1, q_2, \cdots, q_n.$
	- a) Why do you immediately know that $m \ge n$ and hence Q is tall or square?
	- b) Suppose that *b* is an *m*-vector. Show that $\hat{x} = Q^T b$ is the vector that minimizes $J(x) = ||Qx - b||^2$. Do this by setting up the normal equations directly.
	- c) Rewrite your solution for \hat{x} in part *b* in terms of the columns of *Q*. It will be helpful to write $b = (b_1, b_2, \dots, b_m)$. You should now be able to complete the sentence below using the words "inner product...".

If the columns of *Q* are orthonormal, then the least squares approximation \hat{x} for the system $Qx = b$ is ...

- 2. Supplemental 12.6 Hint: Your matrix A will be 6×4 and will have a lot of 0's and 1's.
- **3.** Suppose we want to compute the coefficients of the quadratic $p(t) = c_1 + c_2t + c_3t^2$ that is the least squares fit to the following (t, y) data points: $(0, 0)$, $(1, 8)$, $(3, 8)$, $(4, 20)$.
	- 1. Formulate the problem in the form of $Ac = b$. That is, find the matrix A and the vector *b*. You don't need to solve this system.
	- 2. Now formulate the normal equation $A^TAc = A^Tb$ that you would use to find these best-fit coefficients. Again, do not solve the system. (But don't worry, there is a Julia problem that tackles this!)
- 4. Text: problem 12.4. Hint: you will find that the square roots of the weights are important and note that the weights are *positive*. For part (b), remember that the columns of *C* are linearly independent if and only if the only solution of $Cx = 0$ is $x = 0$.