1. Let

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix}, \quad x_3 = \begin{bmatrix} -1 \\ 5 \\ 4 \end{bmatrix}.$$

Show that x_1 , x_2 and x_3 are linearly dependent two different ways:

- a) Find coefficients β_1 , β_2 , β_3 such that $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = 0$. (There are many ways to do this. You can try just guessing or a more systematic approach.)
- b) Write x_1 as a linear combination of x_2 and x_3 .
- **2.** Let

	[1]		[1]		[1]	
<i>y</i> ₁ =	1,	<i>y</i> ₂ =	0,	<i>y</i> ₃ =	-1	
	[1]		[1]		2	

- a) Show that y_1 , y_2 and y_3 are linearly independent. That is, show that if β_1 , β_2 and β_3 are numbers such that $\beta_1 y_1 + \beta_2 y_2 + \beta_3 y_3 = 0$ then, in fact, $\beta_1 = \beta_2 = \beta_3 = 0$. (Note that you *must* be systematic about this.)
- b) Briefly explain why y_1 , y_2 and y_3 form a basis for \mathbb{R}^3 . Your answer should be one sentence.
- c) Because these vectors form a basis for R³, and because z = (2, 1, 3) is a vector in R³, there is a unique linear combination β₁y₁ + β₂y₂ + β₃y₃ = z. Find the numbers β₁, β₂ and β₃.
 (This will be tedious. We will automate this later. This one time, try doing it by hand. Practice efficiency!)
- **3.** In class I mentioned "Fact A". Your book calls this the "independence-dimension inequality". It says "A linearly independent collection of *n* vectors has at most *n* elements".
 - a) Consider

$$a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Explain how you know, without doing any work, that this collection is linearly dependent.

b) Because the collection is linearly dependent, it has redundancy. Exhibit this redundancy by finding *three* different linear combinations of the vectors that give you (0, 0).

One of these is trivial! One will take a little bit of work. Once you have that one, you can easily find infinitely many others, so locating a third will be a breeze!

- c) Exhibit the redundancy differently by finding *three* different linear combinations of *a*₁, *a*₂ and *a*₃ that give you (4, 7).
 Hint: Find one linear combination that works. Then use you answer from part (a) to help!
- **4.** Suppose w_1 , w_2 and w_3 are any vectors at all in \mathbb{R}^{17} . Let $v_1 = w_1 w_2$, $v_2 = w_2 w_3$ and $v_3 = w_3 w_1$. Show that v_1 , v_2 and v_3 are linearly dependent. **Hint:** find an explicit linear combination that yields zero.
- **5.** Text: 5-4
- 6. Text: 5-5 modified as follows. Suppose *a* and *b* are any *n*-vectors. Find a formula in terms of *a* and *b* for a scalar γ such that $a \gamma b$ is perpendicular to *b*. Then draw a picture of *a*, *b*, and $a \gamma b$ when a = (0, 1) and b = (1, 1).