1. Evaluate each expression below or explain why they do not exist.

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} -1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & -1 & 2 \\ 5 & -2 & 1 \end{bmatrix},$$

$$x = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \qquad y = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 2 \end{bmatrix}, \qquad z = \begin{bmatrix} 5 & 0 & 1 \end{bmatrix}$$

(a) $3A - 2B$
(b) $3A - 2C$
(c) Ax
(d) By
(e) Cz
(f) $Ax + Cz^{T}$
(g) $B^{T}y + z^{T}$
2. Suppose $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Find a matrix A such that
(a) $Ax = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$
(b) $Ax = \begin{bmatrix} 2 \\ -1 & 2 \\ 5 & -2 & 1 \end{bmatrix}$

3. Write the question below into a question with the form Ax = y.

Are the vectors
$$\begin{bmatrix} 1\\1\\2\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\1\\-2\\-2 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\-1\\-1\\-1 \end{bmatrix}$, $\begin{bmatrix} 2\\-1\\-1\\-3 \end{bmatrix}$ linearly independent?

NOTE: You are not asked to answer the question. You are asked to rephrase it using matrix-vector multiplication.