Final Exam Questions

- 1. How to compute ||v|| and what does it mean?
- 2. How do you find the angle between two vectors? How do you know if two vectors are orthogonal (perpendicular) or at an acute (or obtuse) angle.
- 3. Assume you are given a collection of vectors, say v_1, v_2, v_3 , how can you *show* they are linearly independent? Linearly dependent?
- 4. Assume you are given a collection of vectors, say v_1, v_2, v_3 , how can you show that they form a basis? That they do not form a basis? That they are an orthonormal basis?
- 5. Assume a set of vectors is a basis, say v_1, v_2, v_3 , and you are given another vector, say v, how do you write v vector as a linear combination of v_1, v_2, v_3 ? What are the advantages of an orthonormal set of vectors?
- 6. Given vectors a_1 , a_2 , a_3 , how do you implement the Gram-Schmidt algorithm? What properties do the *q*'s have? How are those properties related to the *a*'s?
- 7. If q_1 , q_2 and q_3 are orthonormal in \mathbb{R}^3 , explain how you know they form a basis? Since they do, given $x \in \mathbb{R}^3$ we can write $x = \alpha_1 q_1 + \alpha_2 q_2 + \alpha_3 q_3$ for some numbers α_1 , α_2 and α_3 . What are the numbers α_k ? Hint: they can be expressed using inner products: equation (5.5) in the text.
- 8. Can you find the matrix A such that Ax is the transformation of the plane that rotates x by 60 degrees and then reflects it about the y axis?
- 9. Given a vector a and a vector b, how do you compute the convolution a * b? What is the matrix T such that a * b = Tb?
- 10. Know how to represent a linear function in terms of a matrix. For example, suppose f is the function that takes (x_1, x_2, x_3) to $((x_2 + x_3)/2, -x_3, x_1)$. What is its representation in terms of a matrix?
- 11. Similarly, suppose f is a linear map from R^2 to R^4 and $f(e_1) = (-1, 3, 4, 3)$ and $f(e_2) = (2, 3, 4, 9)$. What is the representation of f in terms of a matrix?
- 12. How can you show that a function is linear? Affine? Not affine? Think up your own examples of functions from R^3 to R^3 that are linear, affine, and neither.
- 13. If asked for the coefficients of a quadratic polynomial p with $p(x_i) = y_i$ for i = 1, ..., 5, can you set up a system of linear equations to solve for the coefficients?
- 14. How do you solve Ax = b if A is lower triangular? What if A is upper triangular?
- 15. How do you check that a matrix A is orthogonal?
- 16. How do you check that the *columns* of the matrix *A* form an orthogonal set of vectors? How is this question different from the previous one?
- 17. What is the column perspective of matrix-matrix multiplication? What is the row perspective?
- 18. Express the following task as a matrix algebra task: "Find a linear combination of vectors a_1 , a_2 and a_3 that equals b". This gets at the column interpretation of matrix-vector multiplication (page 119).
- 19. What is the transpose of a matrix product?

- 20. If you multiply a 3×3 matrix A on the left by diag(1, 2, 3) what is the result? How about if you multiply A on the right by diag(1, 2, 3)?
- 21. Find a 4×5 matrix *L* such that when you multiply any $5 \times k$ matrix *A* on the left by *L*, the result is the matrix *A* with its bottom row removed.
- 22. Given a matrix *A* with linearly independent columns, how do you compute its QR factorization? This is related to the Gram-Schmidt algorithm, and you should review how you convert the steps of the Gram-Schmidt algorithm into the entries of the matrices of the QR factorization. **You will be asked to show that you know how to do this.** See also homework 8, additional problem 2.
- 23. Now, given the QR factorization of a square matrix A, how do you solve Ax = b? This is a two step procedure. If I give you Q and R, can you carry out the steps?
- 24. Suppose *A* has a left inverse. Show that the columns of *A* have to be linearly independent.
- 25. Once you know that a square matrix has linearly independent columns you know a whole bunch of other things are true. Name as many as you can. How many solutions of Ax = 0 are there? Why?
- 26. Similarly, once you know that a square matrix is **not** invertible (or is singular), you know a whole bunch of things. Name as many as you can. How many solutions to Ax = 0 are there?
- 27. What is the inverse of a matrix product of invertible matrices? What is the inverse of the transpose of an invertible matrix?
- 28. Suppose A is an 3×3 matrix. How do you find A^{-1} ? If you have a QR factorization of A, how do you find A^{-1} ?
- 29. How to you find the pseudoinverse of a matrix A?
- 30. How can you use the pseudoinverse of a matrix A?
- 31. How do you find *the least squares approximate solution* of Ax = b, namely \hat{x} , and how do your interpret it?
- 32. What are the *normal equations* are for a system Ax = b.
- 33. If A has a QR-factorization, what is it's pseudoinverse?
- 34. Suppose *A* is tall and A = QR, where *Q* has orthonormal columns and *R* is upper-triangular, How do your compute the pseudo inverse A^{\dagger} ? How do you find the least squares approximate solution to Ax = b?
- 35. Translate a problem such as approximating a given set of points with a polynomial to a least squares approximation problem. Set up a matrix system to solve this problem and solve it. (See HW 10 #3.)
- 36. Suppose \hat{x} is the least squares approximate solution to Ax = b and suppose y is any other *n*-vector. What can you conclude about \hat{x} and y?
- 37. You should know what the null space of a matrix *A* is, how to find it, and how it relates to linear functions and matrix invertibility.
- 38. Suppose you have two vectors $w_1 = (1, 2, 3, 4)$ and $w_2 = (2, 3, 4, 5)$. Set up a matrix A such that the null space of A is the set of all vectors perpendicular to both w_1 and w_2 . Then determine the set of vectors in this null space.

- 39. Suppose A is a wide matrix and w is a solution to Ax = b, how do you find *all* solutions to Ax = b?
- 40. How do your find the determinant of a matrix, including very large but sparse ones.
- 41. You should know basic "determinant algebra" including
 - how elementary row operations and matrix operation (+, *, inverses) affect the determinant
 - · how the determinant relates to the null space and, thus, invertibility
- 42. You should know what eigenvalues and eigenvectors of a matrix A are, how to find them, how to confirm them, and what they indicate about A as a linear function.
- 43. What are the eigenvalues of an upper triangular matrix?
- 44. Given a square matrix A and vector v, how would you check if v was an eigenvector of A?
- 45. If x is an eigenvector of A with eigenvalue λ , what can you say about $A^k x$ for a positive integer k?