Fall 2024 Math F314X Linear Algebra: Midterm 1

Name: Solutin

Rules:

- Show your work.
- You may have a single handwritten sheet of paper with writing on one side.
- You may use a calculatior

1. (10 points) Let a and b be n-vectors. Show by direct computation that $||a + b||^2 - ||a - b|| = 4a^Tb$.

$$
||a+bil2 - ||a-b||2 = (a+b)7(a+b) - (a-b)7(a-b)= a7a+2ab + b7b - [a7a - 2ab + b7b]= 4a7b
$$

\n- 2. (20 points) Let
$$
a_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})
$$
 and $a_2 = (\frac{-\sqrt{3}}{2}, \frac{1}{2})$.
\n- (a) Show that a_1 and a_2 are an **orthonormal** set of vectors.
\n

• check
$$
a_1 \perp a_2
$$

\n $a_1^T a_2 = \frac{1}{2} \left(-\frac{5}{2} \right) + \frac{5}{2} \left(\frac{1}{2} \right) = 0$

. check normality
\n
$$
\|a_1\| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1
$$

(b) Write the vector $v = \begin{bmatrix} 4 \\ -8 \end{bmatrix}$ as a linear combination of a_1 and a_2 . Show your work. · Find coefficients

$$
VT a1 = \begin{bmatrix} 4 \\ -8 \end{bmatrix} \begin{bmatrix} y_2 \\ 13/2 \end{bmatrix} = 2 - 415
$$

$$
VT a2 = \begin{bmatrix} 4 \\ -8 \end{bmatrix} \begin{bmatrix} -13/2 \\ y_2 \end{bmatrix} = -215 - 415
$$

-
$$
ansu
$$
er
\n $\begin{bmatrix} 4 \\ -8 \end{bmatrix} = (2 - 4\sqrt{3}) \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + (-2\sqrt{3} - 4) \begin{bmatrix} -\sqrt{3} \\ \frac{1}{2} \end{bmatrix}$

- 3. (15 points) Given the vectors $x_1 =$ $\sqrt{2}$ 4 1 3 θ 3 $\Big\}$, $x_2 =$ $\sqrt{2}$ 4 2 2 θ 3 $\Big\}$, $x_3 =$ $\sqrt{2}$ 4 1 0 0 3 $\Big\}$, $x_4 =$ $\sqrt{2}$ 4 $\overline{0}$ θ 1 3 $\vert \cdot$
	- (a) Carefully explain why no computation is necessary to determine that the vectors x_1, x_2, x_3 , and *x*⁴ are linearly dependent.

Since the number of vectors,
$$
4
$$
, is larger than the
dimension of the vectors, 3 , our Fact A implies
the must be linearly dependent.

(b) Use the definition to show the vectors x_1, x_2, x_3, x_4 are linearly dependent.

I need to find $P_{13}P_{23}P_{33}P_{4}$ where $P_{1}X_{1}+P_{2}X_{2}+P_{3}X_{3}+P_{4}X_{4}=0$. $O(r)$ $B_1 + 2 B_2 + B_3 = 0$
 $B_1 + 2 B_2 + B_3 = 0$ Demonstration of corrective $3 + 2 \beta_2$ = 0
 $\beta_4 = 0$
 $\beta_1 = 0$
 $\beta_2 = 3$. Then (i) imp
 $\beta_2 = 3$. Thus, (i) imp $-2\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + 3\begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix} - 4\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $34 =$ +2 β_2 = 0
 $\beta_4 = 0$
 $\beta_2 = 3$. Then (i)
 $\beta_1 = -2$ Thus, (i) in

P:
$$
dx \beta_2 = 3
$$
. Then (i) implies
\n $\beta_1 = -2$. Thus, (i) implies
\n $\beta_3 = -\beta_1 - 2\beta_2$
\n $= -(-2) - 2(3) = 2 - 6$
\n $= -4$

4. (25 points) Let
$$
T = \begin{Bmatrix} 1 \\ v_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \end{Bmatrix}
$$
.

(a) Show that *T* is linearly independent.

Suppose $\alpha_1 v_1 + d_2 v_2 + d_3 v_3 = 0$. (\cancel{x}) We need to show $d_1=d_2=d_3=0$. $Equation$ * gives the system of equations **x** , d_2 = 0 ω $2d_1$ + 3dz = 0 (1) $2d_1$ + 4 a_3 =

Using (iii) – (ii) we get
$$
a_3 = 0
$$
.
Plugging $d_3 = 0$ into (ii) implies $a_1 = 0$.
Plugging $a_1 = 0$ into (i) implies $a_2 = 0$.
Thus we have demonstrated that the only
solution b (A) is $d_1 = d_2 = d_3 = 0$. Thus, we
have shown using the definition that
 V_1, V_2 , and V_3 are linearly independent.

(b) Begin the Gram-Schmidt algorithm on the vectors v_1, v_2, v_3 , in the given order.

(b) begin the determinant on the vectors
$$
v_1, v_2, v_3
$$
, in the given order.
\nRecall $T = \begin{pmatrix} v_1 - \frac{1}{2} \end{pmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$
\ni. Find $\overline{q_1}$ and q_1 .
\n
$$
\overline{q_1} = V_1 = \begin{pmatrix} 1, 2, 2 \end{pmatrix}
$$
\n
$$
q_1 = \frac{\overline{q_1}}{\overline{1q_1}} = \frac{1}{\sqrt{1^2 + 2^2 + 2^2}} \cdot V_1 = \frac{1}{3}V_1 = \begin{bmatrix} \frac{y_3}{2} \\ \frac{y_3}{2} \\ \frac{z_4}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3}
$$

5. (30 points) Short Answer

(a) Let
$$
a_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix}
$$
 and $a_2 = \begin{bmatrix} 5 \\ 4 \\ 3 \\ c \end{bmatrix}$ where *c* is some real number. Determine the values of *c* such that the angle between a_1 and a_2 be obtuse. (An angle is obtuse if it is larger than 90 degrees.)
\nWe need $a_1^T a_2 < 0$.
\n $a_1^T a_2 = 5 + 8 - 4 + 4c = 4 + 4c$.
\nIf $4 + 4c < 0$, then $c < -1$.
\nAnswer *c* can be any real number in $(-20, -1)$.

(b) If
$$
||x|| = 10
$$
 and $||y|| = 5$, what are possible values for $||x + y||$?
\n $tr \, \text{angle}$ $|x+ y|| \ge ||x + y|| \le ||x|| + ||y|| = |0+5=15$.
\nSince $||x+y|| \ge 0$, we know $||x+y||$ is in $[0,15]$.
\n $ln \, \text{fact}$, we can conclude that $||x+y|| \ge ||x|| - ||y|| \le 5$
\nusing the observation that $||x|| = ||x+y|| \ge ||x|| - ||y|| \le ||x+y|| + ||y||$.

(c) The vectors v_1, v_2, \cdots, v_k are k - vectors and they form an orthonormal set of vectors. Can you conclude that they are a **basis**? **Justify** your conclusion using complete sentences.

They do form ^a basis . Yes . Justification ^① Because they are orthonormal , we know they are linearly independent . live know they are ^a set of ^K ② From ① linearly independent ^K - vectors , which , is the definition of ^a basis .

(d) Suppose $f(x)$ is a scalar-valued function of a 50-vector that outputs the sum the first 30 values in the input vector x . Determine whether $f(x)$ is a linear function and demonstrate your answer is correct.

$$
f is linear.\nIt is sufficient to demonstrate that\n $f(x) = a^T x$ for some appropriate *a*.
\n
$$
\ln \{f(x) = a^T x \text{ for some appropriate } a\}
$$
\n
$$
a = (1_{30}, 0_{20}) \text{ will work.}
$$
$$

(e) Determine a matrix A such that
$$
A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_5 \\ x_4 \\ x_3 \\ x_5 \end{bmatrix}
$$

^A must be ^a 3×5 matrix . I reverse - engineer it .

$$
\begin{bmatrix}\n0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0\n\end{bmatrix}\n\begin{bmatrix}\nx_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5\n\end{bmatrix} = \n\begin{bmatrix}\n15 \\
x_4 \\
x_3 \\
x_5\n\end{bmatrix}
$$