Fall 2024 Math F314X Linear Algebra: Midterm 1

Name: _____

Rules:

- Show your work.
- You may have a single handwritten sheet of paper with writing on one side.
- · You may use a calculatior

Problem	Possible	Score
1	10	
2	20	
3	15	
4	25	
5	30	
Total	100	

1. (10 points) Let a and b be n-vectors. Show by direct computation that $||a + b||^2 - ||a - b||^2 = 4a^Tb$.

- 2. (20 points) Let $a_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ and $a_2 = (\frac{-\sqrt{3}}{2}, \frac{1}{2})$.
 - (a) Show that a_1 and a_2 are an **orthonormal** set of vectors.

(b) Write the vector $v = \begin{bmatrix} 4 \\ -8 \end{bmatrix}$ as a linear combination of a_1 and a_2 . Show your work.

- 3. (15 points) Given the vectors $x_1 = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, x_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, x_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$
 - (a) Carefully explain why no computation is necessary to determine that the vectors x_1, x_2, x_3 , and x_4 are linearly dependent.

(b) Use the definition to show the vectors x_1, x_2, x_3, x_4 are linearly dependent.

4. (25 points) Let
$$T = \left\{ v_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \right\}.$$

(a) Show that T is linearly independent.

(b) Begin the Gram-Schmidt algorithm on the vectors v_1, v_2, v_3 , in the given order.

Recall
$$T = \left\{ v_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \right\}.$$

i. Find $\overline{q_1}$ and q_1 .

ii. Find $\overline{q_2}$ and q_2 .

5. (30 points) Short Answer

(a) Let $a_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix}$ and $a_2 = \begin{bmatrix} 5 \\ 4 \\ 3 \\ c \end{bmatrix}$ where c is some real number. Determine the values of c

such that the angle between a_1 and a_2 be obtuse. (An angle is obtuse if it is larger than 90 degrees.)

(b) If ||x|| = 10 and ||y|| = 5, what are possible values for ||x + y||?

(c) The vectors v_1, v_2, \dots, v_k are k- vectors and they form an orthonormal set of vectors. Can you conclude that they are a **basis**? **Justify** your conclusion using complete sentences.

(d) Suppose f(x) is a scalar-valued function of a 50-vector that outputs the sum the first 30 values in the input vector x. Determine whether f(x) is a linear function and demonstrate your answer is correct.

(e) Determine a matrix A such that
$$A\begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5\end{bmatrix} = \begin{bmatrix} x_5\\x_4\\x_3\end{bmatrix}$$