Fri Nov 8 • Midterm ² Monday The review sheet is helpful .

From Wednesday • Given system Ax=b , columns of A are linearly independent the least squares approximation is, \hat{x} , where $\hat{x} = A^T b$ and think of \hat{x} as \cdot the vector that minimizes $||A \times b||$ " Or \cdot a "best" approximation of a solution k $A \times =$

 \mathcal{F} Terminology $f(x) = ||A x-b||^2$ ← objective fcm. - I $A^T A$ $A^T A$ $B = \hat{X}$ $\iff A^T B = \hat{X}$ • To solve $Ax = b$. Mult.by A^T on both. $\begin{array}{c}\n\text{normal} \\
\hline\n\text{A}^T \text{A} \times = \text{A}^T \text{b} \\
\hline\n\end{array}$

Example: Find the line of best fit for the point

\n(1,1), (2,4), (4,11).

\nWe want
$$
y = mx + b
$$
 that is close to points. So...

\nwe want m and b so that $1 = m + b$

\n $4 = 2m + b$

\n $4 = 2m + b$

\nor

\n $\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 4 & 1 \end{bmatrix}$

\n $\begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$

\nThen is No solution by the equation $\frac{dy}{dx}$ is not constant for our points.

\nFind a least square approx. solution:

\n $\begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 1 \\ 4 & 1 & 1 \end{bmatrix}$

\n $= \begin{bmatrix} 2 & 3 & -1 \\ 4 & 3 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -24 & -4 & 54 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix}$

\n $= \begin{bmatrix} \frac{3}{14} & \frac{4}{2} \\ \frac{4}{14} & \frac{4}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -24 & -4 & 54 \\ 1 & 1 & 1 \end{bmatrix}$

\n $= \begin{bmatrix} \frac{3}{14} & \frac{4}{2} \\ \frac{4}{14} & \frac{4}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -24 & -4 & 54 \\ 1 & 1 & 1 \end{bmatrix}$

\

There is another strategy for finding A^{\dagger} :

using QR factorization . Quick Review Given A an nxn matrix w/ linearly Independent columns , ① use Gram - Schmidt to find Henormal vectors q, $q_z...q_y$ which form the columns of matri \rightarrow , an orthogonal matrix. Find K using $R_{ij} = a_j^T q_i$ for $1 \leq i \leq j \leq n$ and Zeros below diagonal What if ^A is not square ? Say mxn . S iven A an man matrix ω / linearly well, then $\frac{1}{\frac{1}{10}}$ use Gram-Schmidt to find $\frac{1}{10}$ We can orthonormal vectors q, q, \ldots, q $\frac{1}{10}$ We can orthonormal vectors q, q, \ldots, q $\frac{1}{10}$ We can orthonormal vectors q, q, \ldots, q would $displacement$ columns, \leftarrow \leftarrow $m > n$ Use Gram-Schmidt to find We can still apply G.
orthonormal vectors 9, 9-19, get the 9:5
which form the columns of matrix
Q, an orthogonal matrix. 4 Q would also be mxh \parallel We can still apply GS to $-$ thonormal vectors $q, q, ...$ $\frac{1}{2}$ oet the q_i 's which form the columns of matrix 9 , an orthogonal matrix. $2 - Q$ would also be mxn and $\frac{1}{\frac{1}{\sqrt{2}}\sqrt{2}}$ orthonormal vectors q, q, \ldots, q We can still apply GS to
orthonormal vectors q, q, \ldots, q $q, \pm 1$
of matrix have orthonormal columns . Find K using $R_{ij} = a_j^T q_i$ for $1 \le i \le j \le n$ and $\frac{1}{2}$ Was below diagonal 4 This still works blc we have n g s and R $a_i s$!

Ex QR-decompositive/factorization for

As a matter of implementation God: Find 8 the least squars of prox of Ax=b. (Columns of A are lin. indp) OR method.
O A = GR. « find QR factografi 2 Solve $Rx = G^Tb$ by back sub. To be specified Find $\begin{pmatrix} 1 & 1 \ 2 & 1 \ 4 & 1 \end{pmatrix}$ $X = \begin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \ 2 & 1 \ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \ 2 & 1 \ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \ 2 & 1 \ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \ 2 & 1 \ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1$ $\sqrt{21}x_1 + \sqrt{21}x_2 = \frac{53}{\sqrt{21}}$ $\frac{\sqrt{6}}{3}x_2 = \frac{-5\sqrt{6}}{6}$ $\Rightarrow x_2 = \frac{-5}{2}$ Plug $x_2 = \frac{-5}{2}$ into $\sqrt{2}l x_1 + \sqrt{2}l x_2 = \frac{53}{\sqrt{2}l}$ to get $x_1 = \frac{47}{14}$

How to find the point on the line L c losist to the point $P(1, 3, 5)$ if L is the line through (0,0,0) in the director $\begin{array}{|c|c|c|c|}\hline 2 & \frac{1}{2} & \text{Want} & x & \text{so that} \end{array}$ $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ $x = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ no sola. Find \hat{x} . $\hat{\chi} = A^{\dagger} \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = (\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix})$ = $\left\lfloor \frac{1}{2} \right\rfloor \left[1 \right\rfloor \left[\frac{1}{3} \right] = \frac{1}{6} \left(1 + 6 + 5 \right) = 2$ \hat{x} =2 or $\begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$ is closed to $\begin{bmatrix} 3 \\ 3 \\ 5 \end{bmatrix}$ $v = (1,24)$
 $A^T w = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ = 0