Wed Nov13 Goal: Eigenvalues and Eigenvectors Topics on the way: Null Spaces and Determinants Motivating Problem : Solving a system of linear, first-order differential equations. Ex Solve dy = v(t) - w(t) V (0)= 40 $\frac{dw}{dt} = 2v(t) + 4w(t)$ w(o) = 10<u>Claim</u>: $V(t) = 90e^{2t} - 50e^{3t}$ $w(t) = -90e^{2t} + 100e^{3t}$ is a solution. You check if this is correct. See worksheet.

Exi Solve
$$\frac{dx}{dt} = v(t) - u(t)$$
 $v(u) = 40$ $Claim: v(t) = 90 t^{2t} - 50 t^{2t}$
 $\frac{du}{dt} = 2v(t) + 4u(t)$ $u(t) = -90 t^{2t} + 100 t^{2t}$
How to find this? How is this Linear Algebra?
(D) Translate to the framework of matrices and vectors.
Let $u(t) = [v(t)] \leftarrow (S_0 \ u \ is the solution we seek)$
So $\frac{du}{dt} = \begin{bmatrix} dV \\ dt \\ du \\ dt \end{bmatrix} \leftarrow$ The left-hand side of the system of differential equations.
Now $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$, $A \ u \leftarrow$ The right-hand side of differential equations.
 $u(0) = \begin{bmatrix} 40 \\ 10 \end{bmatrix}$ Initial conditions.
So this system $\frac{du}{dt} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$, $u(0) = \begin{bmatrix} 40 \\ 10 \end{bmatrix}$
In general, these $\frac{du}{dt} = A u$ with $u = u(0)$ can be written $\frac{du}{dt} = A u$ with $u = u(0)$