1. An example of a system of linear, first-order differential equations.

$$\int U \left[\frac{dv}{dt} = v(t) - w(t) \quad \textcircled{O} \quad v(0) = 40 \\ \frac{dw}{dt} = 2v(t) + 4w(t) \quad \textcircled{O} \quad w(0) = 10 \end{bmatrix} \text{ initial conditions}$$
2. A solution: $v(t) = 90e^{2t} - 50e^{3t}$, $w(t) = -90e^{2t} + 100e^{3t}$.
And initial conditions correct?
 $V(0) = 90 - 50 = 40^{100}$
 $w(0) = -90 + 100 = 10^{10}$

$$(1) \quad \frac{dv}{dt} = 180e^{2t} - 150e^{2t}$$
 $V(t) - w(t) = (90e^{2t} - 50e^{3t}) - (-90e^{2t} + 100e^{3t})$
 $= 140e^{2t} - 150e^{3t}$

$$(2) \quad \frac{dw}{dt} = -180e^{2t} + 300e^{3t}$$

$$2v(t) + 4w(t) = (180e^{2t} - 100e^{3t}) + (340e^{2t} + 400e^{3t})$$
 $= -180e^{2t} + 300e^{3t}$

Null Spaces

3. Let A be an $m \times n$ matrix, then the null space of A is the set of all n-vectors X So that $A \times = 0$. It's denoted N(A).

4. Example 1:
$$A = \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \text{ in } N(A) \quad b/c \quad \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ is not in } b/c \quad \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$N(A) = \begin{cases} 2a \\ -a \end{bmatrix} : a \text{ any real } \# \end{cases}$$

5. Example 2:
$$B = \begin{bmatrix} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{bmatrix}$$
 Find N(B). Solve $B = 0$ for all x-vectors
 $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 5 & 4 & 9 & 0 \\ 5 & 4 & 6 & 0 \end{bmatrix}$ rref $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x_1 + x_3 = 0 & x_1 = -x_3 \\ x_2 + x_3 = 0 & x_2 = -x_3 \end{bmatrix}$
 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} C \\ -C \end{bmatrix}$. Answer : $N(B) = \sum \begin{bmatrix} C \\ c \\ -C \end{bmatrix}$: C any real #2

- 6. Show/prove/give an argument for each of the statements below.
 - (a) For every matrix $A, N(A) \neq \emptyset$. O in N(A) because A O = O for all matrices

(b) If A is invertible, then N(A) contains only the zero vector.

- If Ais invertible, then Ax=0 implies X=A0=0.
- (c) If the vector x is in N(A), then for any number c, cx is in N(A).

If x in N(A), then A x=0. So $A(c_{x}) = c A_{x} = c \cdot 0 = 0$. So cx in N(A)

(d) If both of the vectors x and y are in N(A), then the vector x + y is also in N(A).

If
$$x,y$$
 in $N(A)$, then $Ax=0$ and $Ay=0$.
So $A(x+y) = Ax + Ay = 0+0=0$.

(e) If x is in N(A) and the vector z is not in N(A), then x and z are linearly independent. If x and y were linearly dependent, then y=cx for some c. Since x in N(A), cx in N(A) by part(c). But this is impossible since y is not in N(A).

(f) If the vector a is in N(A) and c is a solution to Ax = b, then c + a is also a solution to Ax = b.

A(c+a) = Ac+Aa = b+0 = b

(g) If both of the vectors c_1 and c_2 are solutions to Ax = b, then there is a vector a in N(A) such that $c_2 = c_1 + a$.

Choose a = C2-C1. By this choice c2 = C1+a. (!!) Now $A_a = A(c_2 - c_1) = A c_2 - A c_1 = b - b = 0$. So a in N(A). !!

7. Main Principles

