NULL SPACE AND GEOMETRY

Return to thinking of the matrix-vector product as a function from R™ to R™ given an m x n matrix.
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1. Example 1: Let A = [10 20

} and f(z) = Ax.
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(a) State N(A). (Recall that we did this on the previous sheet.) N(A)= e |-

(b) Find the image of the vectors below under f.
i._z: (2,-1), e1 =(1,0), e2 = (0,1) \
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(c) Graph the vectors on the left and their images under f on the right. (Note, | jwouldn’t chose
the same scale on the left as on the right!) _r@.
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2. Example 2: B = [ ] and g(z) = Bx.

(b) Find the image of the vectors below under g.

i. v=(2,—-1), e1=(1,0), e2 = (0,1)

$0Y= (1-3) $ee)=G0), $e)=(03)

(c) Graph the vectors on the left and their images under g on the right.
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