
NULL SPACE AND GEOMETRY

Return to thinking of the matrix-vector product as a function from Rn to Rm given an m⇥ n matrix.

1. Example 1: Let A =


1 2
10 20

�
and f(x) = Ax.

(a) State N(A). (Recall that we did this on the previous sheet.)

(b) Find the image of the vectors below under f.

i. v = (2,�1), e1 = (1, 0), e2 = (0, 1)

(c) Graph the vectors on the left and their images under f on the right. (Note, I wouldn’t chose

the same scale on the left as on the right!)
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What can you deduce about f I w ) for all the

other vectors w in IR
'

?
- All multiples of v get sent to Co

,
O)

All other vectors go to some multiple of ( 1,10 )

- So the vector Cl
,
to) gets sent to a multiple of itself !
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2. Example 2: B =


2 0
0 3

�
and g(x) = Bx.

(a) State N(B)

(b) Find the image of the vectors below under g.

i. v = (2,�1), e1 = (1, 0), e2 = (0, 1)

(c) Graph the vectors on the left and their images under g on the right.
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what does glt ) do to vectors w in 1132 ?

It stretches them by a factor of 2 in the x - direction

and 3 in the y
- direction


