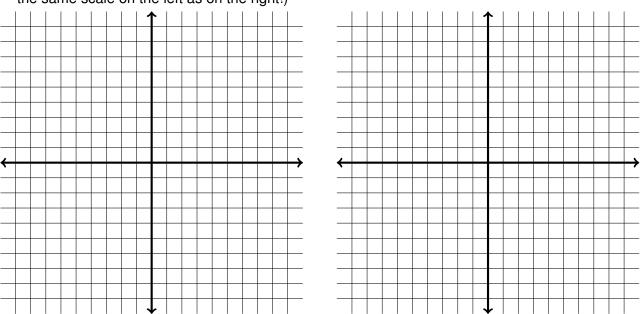
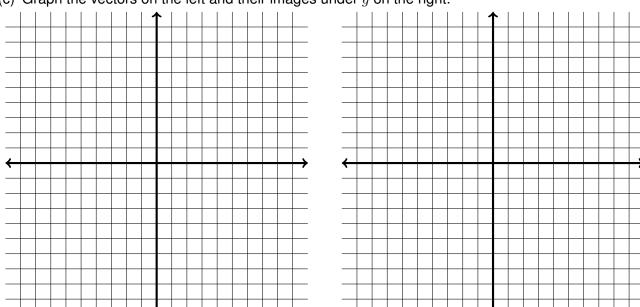
## NULL SPACE AND GEOMETRY


Return to thinking of the matrix-vector product as a function from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  given an  $m \times n$  matrix.

- 1. Example 1: Let  $A = \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix}$  and f(x) = Ax.
  - (a) State N(A). (Recall that we did this on the previous sheet.)

(b) Find the image of the vectors below under f.

i. 
$$v = (2, -1), e_1 = (1, 0), e_2 = (0, 1)$$


(c) Graph the vectors on the left and their images under f on the right. (Note, I wouldn't chose the same scale on the left as on the right!)



- 2. Example 2:  $B = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$  and g(x) = Bx.
  - (a) State N(B)

(b) Find the image of the vectors below under g.

i. 
$$v = (2, -1), e_1 = (1, 0), e_2 = (0, 1)$$



(c) Graph the vectors on the left and their images under g on the right.