WORKSHEET: VECTOR ALGEBRA, LINEAR AND AFFINE FUNCTIONS

1. Label each of the statements below TRUE or FALSE.

Let a, u, and v be *n*-vectors and let α and β be scalars.

(a)
$$a^T u = u^T a$$

(b) $\alpha(u+v) = \alpha u + \alpha v$
(c) $\alpha(a^T u) = (\alpha a)^T u$
(d) $\alpha(a^T u) = a^T (\alpha u)$
(f) $\beta(a^T u) + \beta = \beta(a^T u + 1)$

- 2. Complete the definition of a *linear vector function*: The function $f : \mathbb{R}^n \to \mathbb{R}$ is linear if for every pair of vectors u and v and every pair of scalars α and β ,
- 3. Make up two examples of functions $f : \mathbb{R}^3 \to \mathbb{R}$, one that is linear and one that is not linear.

4. Every linear function can be written

5. The definition of an *affine vector function*: The function $f : \mathbb{R}^n \to \mathbb{R}$ is *affine* if for every pair of vectors u and v and every pair of scalars α and β

6. Every affine function can be written

7. Linear Taylor Approximations

- 8. Let $f(x) = x_1 e^{-x_2} + x_3$ and z = (2, 0, 1).
 - (a) Find $\widehat{f}(x)$, the linear Taylor approximation of f at z.

(b) Find f(2.1, 0.1, 0.9) and $\hat{f}(2.1, 0.1, 0.9)$.

9. Linear Regression

10.	In the chart below, x_1 is house area in 1000 square feet and x_2 is the number of bedrooms. Assume
	the coefficient vector is $\beta = (148.73, -18.85)$ and $v = 54.40$.

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Write out the linear approximation \hat{y} given by β and v and confirm that the top entry in the last column is correct.

11. Interpret the coefficients in β .