

9. Linear Regression: An affine function used to approximate/estimate data.

10. In the chart below, x_1 is house area in 1000 square feet and x_2 is the number of bedrooms. Assume the coefficient vector is $\beta = (148.73, -18.85)$ and v = 54.40.

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Write out the linear approximation \hat{y} given by β and v and confirm that the top entry in the last column is correct.

$$\hat{y} = 148.73 \times_{10} - 18.85 \times_{20} + 54.40 \times_{100} + 54.40$$

$$\hat{y} = 148.73 \times_{100} - 18.85 \times_{20} + 54.40 \times_{100} + 54.40 \times$$

11. Interpret the coefficients in β .

we increase house area by 1000 sq.feet (wo adding any be frooms), we increase the house price by \$148,730

If we increase the # of bedrooms w/o increasing the square footag, then we decrees the house price by \$18,850,