Definitions:

The set of vectors, a_1, a_2, \dots, a_k , is linearly dependent if the are constants $\beta_1, \beta_2, \dots, \beta_K$ so that # $\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_K a_K = 0$ evector a linear combination of the ai's where the β_i 's are NOT all 0. (It should be clear that we can make this # eq. true by selecting $\beta_i = \beta_2 = \dots = \beta_K = 0$.)

B: Ex:
$$a_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}, a_2 = \begin{bmatrix} 0 \\ 3 \\ -3 \\ 1 \end{bmatrix}, a_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Claim: $2 \cdot a_1 + (-1)a_2 + (-1)a_3 = Oy$
Check: $\begin{bmatrix} 2 \\ 4 \\ -2 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -3 \\ 3 \\ -1 \end{bmatrix} + \begin{bmatrix} -2 \\ -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $a_3 = 2a_1 - a_2$ or

 $a_1 = \frac{1}{2}a_2 + \frac{1}{2}a_3$

Equivalent Definitions:

The set of vectors, a_1, a_2, \dots, a_k , is linearly dependent if for some i, a_i can be written as a linear combination of the other a_i 's. $a_i = a_1a_1 + a_2a_2 + \dots + a_{i-1}a_{i-1} + a_{i+1}a_{i+1} + \dots + a_na_n$ Linear $b_i = b_i + a_1a_2 + \dots + a_{i-1}a_{i+1} + a_{i+1}a_{i+1} + \dots + a_na_n$ Linear $b_i = b_i + a_1a_2 + \dots + a_{i-1}a_{i+1} + a_{i+1}a_{i+1} + \dots + a_na_n$

The set of vectors,
$$a_1, a_2, \dots, a_k$$
, is
linearly independent if
the only solution to
* $\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k = 0$
is when $\beta_1 = \beta_2 = \dots = \beta_k = 0$.
(So the trivial choic for β_i 's is
the only solution to \mathcal{X} .)

Ex:
$$a_{1} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}, a_{2} = \begin{bmatrix} 2 \\ 0 \\ 3 \\ 0 \end{bmatrix}, a_{3} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

N.t.S. $\beta_{1} = \beta_{2} = \beta_{3} = 0$ always where
 $\beta_{1} \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix} + \beta_{2} \begin{bmatrix} 2 \\ 0 \\ 3 \\ 0 \end{bmatrix} + \beta_{3} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.
or, equivalently
 $\beta_{1} + 2\beta_{2} + \beta_{3} = 0$
 $2\beta_{1} + \beta_{3} = 0 < \beta_{3} = 0$
 $-\beta_{1} + 3\beta_{2} = 0$
 $\beta_{1} = 0$
 $\beta_{2} = 0$
 $\beta_{3} = 0$
 $\beta_{2} = 0$
 $\beta_{3} = 0$
 $\beta_{2} = 0$
 $\beta_{1} = 0$
 $\beta_{2} = 0$
 $\beta_{3} = 0$
 $\beta_{2} = 0$
 $\beta_{1} = 0$
 $\beta_{2} = 0$
 $\beta_{2} = 0$
 $\beta_{1} = 0$
 $\beta_{2} = 0$
 $\beta_{3} = 0$
 $\beta_{2} = 0$
 $\beta_{2} = 0$
 $\beta_{1} = 0$
 $\beta_{2} = 0$
 $\beta_{3} = 0$
 $\beta_{2} = 0$
 $\beta_{3} = 0$

The set of vectors, a_1, a_2, \cdots, a_k , is linearly independent if no a: can be written as a linear combination of the other ais.

- 1. Let $a_1 = (1, 2) \in \mathbb{R}^2$.
 - (a) Find at least 3 different choices for a vector $a_2 \in \mathbb{R}^2$ such that the set a_1, a_2 is linearly **depen**dent. **`** , •

•
$$a_2 = (1,2)$$
. So $a_1 - a_2 = (0,0)$ Any scalar
• $a_2 = (-1,-2)$. So $a_1 + a_2 = (0,0)$ Any scalar
• $a_2 = (-1,-2)$. So $a_1 + a_2 = (0,0)$ Any scalar
• $a_1 + a_2 = (0,0)$ Any scalar
• $a_2 = (3,6)$. So $a_1 + (-\frac{1}{3})a_2 = (0,0)$ Any scalar
• $a_1 + a_2 = (0,0)$ Any scalar
• $a_2 = (-1,-2)$. So $a_1 + (-\frac{1}{3})a_2 = (0,0)$ Any scalar
• $a_2 = (-1,-2)$. So $a_1 + (-\frac{1}{3})a_2 = (0,0)$ Any scalar
• $a_1 + a_2 = (-1,-2)$. Any scalar
• $a_2 = (-1,-2)$. So $a_1 + (-\frac{1}{3})a_2 = (0,0)$ Any scalar
• $a_2 = (-1,-2)$. So $a_1 + (-\frac{1}{3})a_2 = (0,0)$ Any scalar
• $a_2 = (-1,-2)$. So $a_1 + (-\frac{1}{3})a_2 = (0,0)$ Any scalar
• $a_3 + (-\frac{1}{3})a_4 = (-1,-2)$ Any scalar
• $a_4 + (-\frac{1}{3})a_4 = (-1,-2)$ Any scalar
• $a_5 + (-\frac{1}{3})a_5 = (-1,-2)$ Any scalar
• $a_5 + (-1,-2)$

(b) Find a choice for vector $a_2 \in \mathbb{R}^2$ such that a_1, a_2 are linearly **independent** and demonstrate that you are correct or explain why this is not possible. HRA +BA =0

Say
$$a_2 = (1,0)$$
. N.t.s $\beta_2 = \beta_1 = 0$ for all $\beta_1 a_1 + \beta_2 = 2 = 0$.
 $a_2 a_1 i \cdot a_1 = 0$, $\beta_1 = \beta_2 = \beta_1 = \beta_1 = \beta_2 = 0$, $\beta_1 + \beta_2 = 0$, $\beta_1 + \beta_2 = 0$, $\beta_1 = 0$.
Since $\beta_1 = 0$, $\beta_1 = 0$, $\beta_1 = 0$, $\beta_1 = 0$, $\beta_1 = 0$.
(c) Find a choices for vector $a_2, a_3 \in \mathbb{R}^2$ such that a_1, a_2, a_3 are linearly independent and demonstrate that you are correct or explain why this is not possible.
 $\beta_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \beta_2 \begin{bmatrix} x \\ x_2 \end{bmatrix} + \beta_3 \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ or $\beta_1 + \beta_2 x_1 + \beta_3 y_1 = 0$ or $2\beta_1 + \beta_2 x_2 + \beta_3 y_2 = 0$ or $2\beta_2 x_1 + 2\beta_3 y_1 = \beta_2 x_2 + \beta_3 y_2$ or $\beta_3 = (\frac{1}{2y_1 \cdot y_2})(x_2 - 2x_1)\beta_2$
2. Let $a_1 = (1, 2, 3), a_2 = (-1, 2, -1) \in \mathbb{R}^3$.
(a) Is the set a - a linearly dependent or linearly independent? Institu

(a) is the set
$$a_1, a_2$$
 linearly dependent of linearly independent? Justify.
 $\beta_1 a_1 + \beta_2 a_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ means $\beta_1 - \beta_2 = 0 \implies \beta_1 = \beta_2 \cdot B_1 + 2\beta_2 = 0 \implies \beta_1 = -\beta_2 \cdot B_1 + 2\beta_2 = 0 \implies \beta_1 = -\beta_2 \cdot B_1 + 2\beta_2 = 0 \implies \beta_1 = -\beta_2 \cdot B_2 = 0$

So BI=BZ=0. Also, you can observe that az = Ta, for som teR.

-

(b) If
$$a_3 = (1, 0, 2)$$
, is the set a_1, a_2, a_3 linearly dependent or linearly independent? Justify.

$$2a_{1} - 2a_{2} - 4a_{3} = \begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix} + \begin{bmatrix} 2\\ -4\\ 2 \end{bmatrix} + \begin{bmatrix} -4\\ 0\\ -8 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

or $a_{1} - a_{2} - 2a_{3} = 0$ So a_{1}, a_{2}, a_{3} are linearly dependent.

Let $a_1 = (1, 2, 3), a_2 = (-1, 2, -1) \in \mathbb{R}^3$.

(c) If $a_4 = (0, 0, 1)$, is the set a_1, a_2, a_4 linearly dependent or linearly independent? Justify.

IF
$$\beta_1 a_1 + \beta_2 a_2 + \beta_4 a_4 = 0$$
, then we get the system:
 $\beta_1 - \beta_2 = 0$ (1) Equations (1) and (2) imply $\beta_1 = \beta_2 = 0$.
 $2\beta_1 + \beta_2 = 0$ (2) Now equ. (3) and $\beta_1 = \beta_2 = 0$, means $\beta_3 = 0$
 $3\beta_1 - \beta_2 + \beta_4 = 0$ (3) Since $\beta_1 = \beta_2 = \beta_3$ is the only solution, the vectors
are linearly independent.

(d) Is the set a_1, a_2, a_3, a_4 linearly dependent or linearly independent? Justify.

They are indundent b/c we already have nonzero
$$\beta_i$$
's
from purt \hat{D} :
 $1 \cdot a_1 - 1 \cdot a_2 = 2a_3 + 0a_4 = 0$.

(e) (Spoiler Alert) You should have found that the set a_1, a_2, a_3, a_4 is linearly dependent. Either think up different choices for a_3 and a_4 such that the set a_1, a_2, a_3, a_4 is linearly independent or explain why you think this is not possible.

It is not possible. One way to think about it is B, a, + B2 az+B3 a3+By ay = 0 will have 3 equations (1 equation for each coordinate) and 4 Unknowns (B1, B2, B3, P4). If there is a solution (which there is...) there should be many Solutions.

3. Suppose a_1, a_2, \dots, a_k is a set of *n*-vectors and 0_n is the *n*-vector of all zeros. **Demonstrate** that the set $0_n, a_1, a_2, \dots, a_k$ can never be linearly independent.

Pick C to be any nonzero scalar. Then $C \cdot On + O \cdot a_1 + O \cdot a_2 + \dots + O \cdot a_n = O_n \cdot 1$ not all other scalars and Zero.

4. The set $S = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$ is linearly dependent and the set $T = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$ is linearly independent. (You should be able to see quickly that this statement is true!)

(a) Show that the vector w = (1, 7, 4) can be written as a linear combination of the vectors in S. N.t.s $\beta_1, \beta_2, \beta_3$ so +ka+t $\beta_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \beta_3 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ or $\beta_1 - \beta_2 = 1$ solve systematically $\beta_1 + \beta_2 + 2\beta_3 = 7$ or grass $\beta_1 + \beta_3 = 4$ $\beta_1 = \beta_3 = 2$ $\beta_1 + \beta_3 = 4$ $\beta_1 = \beta_3 = 2$ $\beta_0 + \beta_3 = 4$ $\beta_1 = \beta_3 = 2$ $\beta_1 + \beta_3 = 4$ $\beta_1 = \beta_3 = 2$

(b) Show that the vector w = (1, 7, 4) can be written as a linear combination of the vectors in T.

$$\begin{array}{c} \beta_{1} - \beta_{2} &= 1 \implies \beta_{2} = \beta_{1} - 1 \\ \beta_{1} + \beta_{2} + \beta_{3} = 7 \\ \beta_{1} + \beta_{2} + \beta_{3} = 7 \\ \beta_{1} + \beta_{3} = 4 \implies \beta_{3} = 4 - \beta_{1} \\ \beta_{1} = -\beta_{3} = 4 - \beta_{1} \\ \beta_{1} = -\beta_{3} = 4 - \beta_{1} \\ \beta_{1} = -\beta_{3} = -\beta_{1} \\ \beta_{1} = -\beta_{3} = -\beta_{1} \\ \beta_{1} = -\beta_{2} = -\beta_{2} \\ \beta_{2} = -\beta_{1} \\ \beta_{1} = -\beta_{2} = -\beta_{2} \\ \beta_{2} = -\beta_{2} \\ \beta_{3} = -\beta_{3} = -\beta_{3} \\ \beta_{3} = -\beta_{3} \\ \beta_{3} = -\beta_{3} \\ \beta_{1} = -\beta_{3} \\ \beta_{1} = -\beta_{3} \\ \beta_{1} = -\beta_{3} \\ \beta_{1} = -\beta_{3} \\ \beta_{2} = -\beta_{3} \\ \beta_{3} = -\beta_{$$