Definitions:

The set of vectors, a_1, a_2, \cdots, a_k , is linearly dependent if the are constants $\beta_1, \beta_2, ..., \beta_K$ so that $x \neq \beta_1 a_1 + \beta_2 a_2 + ... + \beta_k a_k = 0$ where a linear combination of the ai's where the β_i 's are NOT β_i ¹¹ O. (It should be clear that we can make this * eq. true by selecting $\beta_i = \beta_i = ... = \beta_k = 0$. $\left\{\begin{matrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{matrix}\right\}$ = $\left\{\begin{matrix} 1 \\ 2 \\ -1 \\ 1 \end{matrix}\right\}$, $a_2 = \left\{\begin{matrix} 0 \\ 3 \\ -3 \\ 1 \end{matrix}\right\}$, $a_3 = \left\{\begin{matrix} 2 \\ 1 \\ 1 \\ 1 \end{matrix}\right\}$ Claim: $2 \cdot a_1 + (-1) a_2 + (-1) a_3 = 0$

$$
Check:
$$
\n
$$
\begin{bmatrix}\n2 \\
4 \\
-2 \\
2\n\end{bmatrix}\n+\n\begin{bmatrix}\n0 \\
-3 \\
3 \\
-1\n\end{bmatrix}\n+\n\begin{bmatrix}\n-2 \\
-1 \\
-1 \\
0\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
0 \\
0 \\
0\n\end{bmatrix}
$$

 $a_3 = 2a_1 - a_2$ $a_1 = \frac{1}{2}a_2 + \frac{1}{2}a_3$

Equivalent Definitions:

The set of vectors, a_1, a_2, \cdots, a_k , is linearly dependent if for some i_2 a: can be written as a linear combination of the other a_i 's. \boldsymbol{a}

The set of vectors,
$$
a_1, a_2, \dots, a_k
$$
, is
\nlinearly independent if
\n h_1e only $s \cdot h_1 + b_2$
\n $\neq \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k = 0$
\nis *when* $\beta_1 = \beta_2 = \dots = \beta_k = 0$.
\n(5 $b_1 + b_2$ + initial choice for β_i 's is
\n h_2 only solution to \neq .)

Ex:
$$
a_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}
$$
, $a_2 = \begin{bmatrix} 2 \\ 0 \\ 3 \\ 0 \end{bmatrix}$, $a_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$
\nN. t. s. $\beta_1 = \beta_2 = \beta_3 = 0$ allows β
\n $\beta_1 \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix} + \beta_2 \begin{bmatrix} 2 \\ 0 \\ 3 \\ 0 \end{bmatrix} + \beta_3 \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.
\n $\beta_1 + 2\beta_2 + \beta_3 = 0$
\n $\beta_1 + 2\beta_2 + \beta_3 = 0$
\n $2\beta_1 + \beta_3 = 0$
\n $\beta_1 + 3\beta_2 = 0$
\n $\beta_1 + 3\beta_2 = 0$
\n $\beta_1 = 0$

$$
S_0, \beta_1 = \beta_2 = \beta_3 = 0
$$

The set of vectors, a_1, a_2, \cdots, a_k , is linearly independent if no ai can be written as a linear combination of the $o+lar a; 's.$

$$
i = \alpha_1 a_1 + a_2 a_2 + \dots + a_{i-1} a_{i-1} + a_{i+1} a_{i+1} + \dots + a_n a_n
$$

Linear

 \mathbf{r}

- 1. Let $a_1 = (1, 2) \in \mathbb{R}^2$.
	- (a) Find at least 3 different choices for a vector $a_2 \in \mathbb{R}^2$ such that the set a_1, a_2 is linearly **dependent**.

$$
a_2 = (1,2)
$$
. So $a_1 - a_2 = (0,0)$ Any scalar
\n $a_2 = (-1,2)$. So $a_1 + a_2 = (0,0)$ multiply of
\n $a_1 \omega i l$
\n $a_2 = (3,6)$. So $a_1 + (-\frac{1}{5})a_2 = (0,0)$

(b) Find a choice for vector $a_2 \in \mathbb{R}^2$ such that a_1, a_2 are linearly **independent** and demonstrate that you are correct or explain why this is not possible.

Say
$$
a_2 = (1, 0)
$$
. N.t.s $\beta_2 = \beta_1 = 0$ for all $\beta_1 a_1 + \beta_2 a_2 = 0$.
\n $a_1 a_1 \gamma a_1 a_1 + \beta_2 = 0$, $\beta_1 = \frac{1}{2} + \beta_2 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{$

(a) Is the set
$$
a_1, a_2
$$
 linearly dependent or linearly independent? Justify.
\n $\beta_1 a_1 + \beta_2 a_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ means $\begin{aligned} \beta_1 - \beta_2 &= 0 \implies \beta_1 = \beta_2 \\ 2 \beta_1 + 2 \beta_2 &= 0 \implies \beta_1 = -\beta_2 \end{aligned}$. But

So $8,58,50$. Also, you can observe that $a_2 \neq 1$ a, for som $16k$.

(b) If
$$
a_3 = (1, 0, 2)
$$
, is the set a_1, a_2, a_3 linearly dependent or linearly independent? Justify.

$$
2a_1 - 2a_2 - 4a_3 = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix} + \begin{bmatrix} -4 \\ -8 \\ -8 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

or $a_1 - a_2 - 2a_3 = 0$ So a_1, a_2, a_3 are linearly dependent.

Let $a_1 = (1, 2, 3), a_2 = (-1, 2, -1) \in \mathbb{R}^3$.

(c) If $a_4 = (0, 0, 1)$, is the set a_1, a_2, a_4 linearly dependent or linearly independent? Justify.

1.
$$
\beta_1 a_1 + \beta_2 a_2 + \beta_4 a_4 = 0
$$
, then we get the system:
\n $\beta_1 - \beta_2 = 0$ (i) $Equatwo$ (i) only $\beta_1 = \beta_2 = 0$.
\n $2\beta_1 + \beta_2 = 0$ (j) Now $2\gamma_1$. (j) and $\beta_1 = \beta_2 = 0$, means $\beta_3 = 0$
\n $3\beta_1 - \beta_2 + \beta_4 = 0$ (k) Since $\beta_1 = \beta_2 = \beta_3$ is the only solution, the vectors are linearly independent.

(d) Is the set a_1, a_2, a_3, a_4 linearly dependent or linearly independent? Justify.

They at indundunt b/c we already have nonzeno P.
From part D:

$$
1 \cdot a_1 - 1 \cdot a_2 = 2 a_3 + 0 a_4 = 0
$$
.

(e) (Spoiler Alert) You should have found that the set a_1, a_2, a_3, a_4 is linearly dependent. Either think up different choices for a_3 and a_4 such that the set a_1, a_2, a_3, a_4 is linearly independent or explain why you think this is not possible.

It is not possible . One way to think about it is β , α_1 + β_2 α_2 + β_3 α_3 + β_4 α_4 = O will have 3 equations (1 equation for each coordinate) and 4 Unknowns (B_1, B_2, B_3) By) . f there is a solution (which there is...) there should be many Solutions.

3. Suppose a_1, a_2, \dots, a_k is a set of *n*-vectors and 0_n is the *n*-vector of all zeros. **Demonstrate** that the set $0_n, a_1, a_2, \cdots, a_k$ can never be linearly independent.

Pick c to be any nonzero scalar. Then $C \cdot C_n + O \cdot a_1 + D \cdot a_2 + ... + O \cdot a_n = O_n$

not all other scalars and \overline{z} \uparrow not all other scalars are zero. zero

4. The set $S = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \right\}$ is linearly dependent and the set $T =$ $\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}-1\\1\\0\end{bmatrix}, \begin{bmatrix}0\\1\\1\end{bmatrix}\right\}$ is linearly independent. (You should be able to see quickly that this statement is true!)

(a) Show that the vector $w = (1, 7, 4)$ can be written as a linear combination of the vectors in S. $N.t.s B_1, B_2, B_3$ so that Ans: β_1 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ \downarrow $\beta_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ \downarrow $\beta_3 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ = $\begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ or $2\cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 1\cdot \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ $\begin{array}{lll} \beta_1 - \beta_2 & = & 9 \text{ o} \text{ l} & \text{c} \text{ s} \text{ s} & \text{d} \text{ m} \text{ m} \text{ m} \text{ m} \text{ m} \ \beta_1 + \beta_2 + 2 \beta_3 & = & 0 \text{ s} & \text{c} \text{ m} \text{ m} \end{array}$ $+ \beta_3 = 4$ $\beta_1 = \beta_3 = 2$ β_1 $50 \, \text{B}$ ₂ = 1

(b) Show that the vector $w = (1, 7, 4)$ can be written as a linear combination of the vectors in T.

$$
\beta_{1} = \beta_{2} = 1 \Rightarrow \beta_{2} = \beta_{1}-1
$$
\n
$$
\beta_{1} + \beta_{2} + \beta_{3} = 7
$$
\n
$$
\beta_{1} + \beta_{3} = 4 \Rightarrow \beta_{3} = 4 - \beta_{1}
$$
\n
$$
\beta_{1} = 4 \Rightarrow \beta_{1} =
$$

For S, Heue are multi-ple ways to write
$$
(1,3,4)
$$

as a linear cumbo.
For T, Heu is only 1 way.