
WORKSHEET: MATRICES

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 5 \\ 1 & 2 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 3 & 4 \\ 5 & -2 \\ \pi & \sqrt{2} \\ 0 & -7 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \qquad y = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix}$$

1. How to think about a general $m \times n$ matrix A

2. Applications

- (a) $\begin{array}{rrrr} x_1+2x_2 &=& 3\\ 4x_1-5x_2 &=& 5 \end{array}$
- (b) graph example

3. Special Matrices

(a) $\mathbf{0} = \mathbf{0}_{m \times n}$, the zero matrix

(b) an $n \times n$ square matrix A and its main diagonal versus its off-diagonal

(c) a diagonal matrix D

(d) I_n , the $n \times n$ identity matrix

(e) an upper (lower) triangular matrix A

(f) a block matrix and its submatrices

Ch 6

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} 3 & 4 \\ 5 & -2 \\ \pi & \sqrt{2} \\ 0 & -7 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 5 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \qquad y = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix}$$

- 4. Things we can do with matrices
 - (a) transpose

(b) matrix addition

(c) scalar multiplication

(d) These operations are well-behaved.

(e) matrix-vector multiplication