

Your Name

Your Signature

Solutions

--

Problem	Total Points	Score
1	20	
2	12	
3	10	
4	10	
5	15	
6	15	
7	10	
8	8	
extra credit	5	
Total	100	

- You have 2 hours.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

1. (20 points)

(a) State the negation of each statement below.

i. If n is divisible by 14, then n is divisible by 2 and n is divisible by 7.

Answer: n is divisible by 14 and (n is not divisible by 2 or n is not divisible by 7.)

ii. For every real number r there exists a rational number q such that $r < q < r+1$.

Answer: There exists a real number r such that for every rational number q , $q \leq r$ or $r+1 \geq q$.

(b) Determine the truth value of the statements below.

i. $2 \in \mathcal{P}(\{0, 1, 2, 3\})$

FALSE. Elements of $\mathcal{P}(\{0, 1, 2, 3\})$ are sets.

ii. $\{\emptyset, \{0, 1\}\} \subseteq \mathcal{P}(\{0, 1, 2, 3\})$

TRUE. Both \emptyset and $\{0, 1\}$ are elements of $\mathcal{P}(\{0, 1, 2, 3\})$

(c) List three different partitions of the set $S = \{1, 2, 3\}$. Label your partitions P_1, P_2 , and P_3 . Use correct notation.

Some examples: $P_1 = \{\{1, 2, 3\}\}, P_2 = \{\{1, 2\}, \{3\}\}, P_3 = \{\{1\}, \{2, 3\}\}$

(d) Let R be an equivalence relation on $S = \{a, b, c, d\}$ such that aRb and dRa . Circle all of the following statements that *must* also be true.

i. cRc (TRUE)

ii. bRd (TRUE)

iii. $d \in [a]$ (TRUE)

2. (12 points) Prove that $1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$ for all $n \in \mathbb{N}$.

Proof: (by induction on n .)

Base Step: Let $n = 1$. Observe $1^3 = 1 = \frac{4}{4} = \frac{1^2(1+1)^2}{4}$. Thus, the proposition holds for $n = 1$.

Inductive Step: Suppose $k \in \mathbb{N}$, $n \geq 1$, and $1^3 + 2^3 + 3^3 + \cdots + k^3 = \frac{k^2(k+1)^2}{4}$. We must show that $1^3 + 2^3 + 3^3 + \cdots + (k+1)^3 = \frac{(k+1)^2(k+2)^2}{4}$. Observe

$$\begin{aligned}
 \sum_{i=1}^{k+1} i^3 &= \left(\sum_{i=1}^k i^3 \right) + (k+1)^3 \\
 &= \frac{k^2(k+1)^2}{4} + (k+1)^3 && \text{by inductive hypothesis} \\
 &= \frac{k^2(k+1)^2}{4} + \frac{4(k+1)^3}{4} && \text{common denominator} \\
 &= \frac{(k+1)^2}{4} (k^2 + 4k + 4) && \text{factor} \\
 &= \frac{(k+1)^2}{4} (k+2)^2,
 \end{aligned}$$

which is what we wanted to show.

Thus, by the method of induction, $1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$ for all $n \in \mathbb{N}$.

3. (10 points) Use the method of proof by contrapositive to prove the proposition below.

Suppose $a, b \in \mathbb{Z}$. If $(a + 1)b^2$ is even, then a is odd or b is even.

Proof: We will prove that if a is even and b is odd, then $(a + 1)b^2$ is odd.

Suppose that a is even and b is odd. Thus, there exist integers m and n such that $a = 2m$ and $b = 2n + 1$. Thus,

$$(a + 1)b^2 = (2m + 1)(2n + 1)^2 = 2(4mn^2 + 4mn + m + 2n^2 + 2n) + 1,$$

where $4mn^2 + 4mn + m + 2n^2 + 2n \in \mathbb{Z}$. Thus, $(a + 1)b^2$ is odd.

4. (10 points) Use the method of proof by contradiction to proof the proposition below.

Suppose $a, b \in \mathbb{R}$. If a is rational and ab is irrational, then b is irrational.

Proof: Suppose $a, b \in \mathbb{R}$, a is rational, and ab is irrational. Further, suppose by way of a contradiction that b is rational.

Since a and b are rational, there exist integers m, n, p, q , $n \neq 0$ and $q \neq 0$ such that $a = \frac{m}{n}$ and $b = \frac{p}{q}$. Thus, $ab = \frac{mp}{nq}$, where $nq \neq 0$. Thus, ab is rational, which contradicts the assumption that ab is irrational.

Thus, by the method of proof by contradiction, if a is rational and ab is irrational, then b is irrational.

5. (15 points) Let the function $f : [0, \infty) \rightarrow [6, \infty)$ be defined as $f(x) = 3x^2 + 6$. Prove that f is a bijection.

Proof: Let $f : [0, \infty) \rightarrow [6, \infty)$ be defined as $f(x) = 3x^2 + 6$.

(one-to-one) Let $x, x' \in [0, \infty)$ such that $f(x) = f(x')$. Thus, $3x^2 + 6 = 3(x')^2 + 6$. By subtracting 6 and dividing by 3, we obtain the equation $x^2 = (x')^2$. Since both x and x' are nonnegative, $x = x'$. Thus, f is injective.

(onto) Let $y \in [6, \infty)$. Pick $x = \sqrt{\frac{y-6}{3}}$. Observe that since $y \geq 6$, we know $(y-6)/3 \geq 0$. Thus, $x \in [0, \infty)$. Now,

$$f(x) = f\left(\sqrt{\frac{y-6}{3}}\right) = 3\left(\sqrt{\frac{y-6}{3}}\right)^2 + 6 = y.$$

Thus, f is onto.

Since f is one-to-one and onto, f is bijective.

6. (15 points) Let R be a relation on \mathbb{R} such that xRy if $x - y \in \mathbb{Z}$.

(a) Prove that R is an equivalence relation.

Proof: We must show that R is reflexive, symmetric, and transitive.

(reflexive). Let $x \in \mathbb{R}$. Since $x - x = 0$ and $0 \in \mathbb{Z}$, it follows that xRx . Thus, R is reflexive.

(symmetric). Let $x, y \in \mathbb{R}$ such that xRy . By the definition of R , it follows that $x - y = n \in \mathbb{Z}$. Thus, $y - x = -n \in \mathbb{Z}$. Thus, yRx and we have shown that R is symmetric.

(transitive). Let $x, y, z \in \mathbb{R}$ such that xRy and yRz . By definition, it follows that $x - y = n \in \mathbb{Z}$ and $y - z = m \in \mathbb{Z}$. Now, $x - z = x - y + y - z = n + m \in \mathbb{Z}$. Thus, xRz and we have shown that R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.

(b) State three distinct elements in $[\pi]$, the equivalence class of R containing π .

There are an infinite number of correct answers. Some include: $-1 + \pi, \pi, 1 + \pi, 2 + \pi, 3 + \pi$.

7. (10 points) Let A, B , and C be sets. Suppose that $A \subseteq B$, $B \subseteq C$, and $C \subseteq A$. Prove that $A = B$.

Proof: Let A, B , and C be sets such that $A \subseteq B$, $B \subseteq C$, and $C \subseteq A$.

To show that $A = B$, we must show that $A \subseteq B$ and $B \subseteq A$.

Observe that $A \subseteq B$ by assumption.

(Show $B \subseteq A$.) Let $b \in B$. Since $b \in B$ and $B \subseteq C$, it follows that $b \in C$. Since $b \in C$ and $C \subseteq A$, it follows that $b \in A$. Thus, $B \subseteq A$.

8. (8 points) Demonstrate that the sets $\{0, 1\} \times \mathbb{N}$ and \mathbb{Z} have the same cardinality.

Example: Let $f : \{0, 1\} \times \mathbb{N} \rightarrow \mathbb{Z}$ be defined as: $f(a, n) = \begin{cases} n - 1 & \text{if } a = 0 \\ -n & \text{if } a = 1 \end{cases}$.

5 points extra credit Prove that your answer above is correct.

We must show that f is a bijection.

(injective) Let $(a, m), (b, n) \in \{0, 1\} \times \mathbb{N}$ such that $f(a, m) = f(b, n)$. There are two possibilities: (i) $a = b = 0$ and $m - 1 = n - 1$ or (ii) $a = b = 1$ and $-m = -n$. Both immediately imply not only that $a = b$ but also $m = n$. Thus, $(a, m) = (b, n)$ and we have shown that the function is injective.

(surjective) Let $n \in \mathbb{N}$. We consider two cases: (i) $n < 0$ and (ii) $n \geq 0$. If $n < 0$, pick element $(1, -n) \in \{0, 1\} \times \mathbb{N}$. Now, $f(1, -n) = -(-n) = n$. If $n \geq 0$, pick element $(0, n+1) \in \{0, 1\} \times \mathbb{N}$. Then, $f(0, n+1) = (n+1) - 1 = n$. Thus, for every $n \in \mathbb{N}$, there exists an $(a, m) \in \{0, 1\} \times \mathbb{N}$ such that $f(a, m) = n$. Thus, f is surjective.