MATH 265 PROOFS FiNAL ExAM SPRING 2022

Your Name Your Signature
Solutions
Problem Total Points Score
1 20
2 12
3 10
4 10
) 15
6 15
7 10
8 8
extra credit 5
Total 100

You have 2 hours.

If you have a cell phone with you, it should be turned off and put away. (Not in your
pocket)

e You may not use a calculator, book, notes or aids of any kind.

In order to earn partial credit, you must show your work.
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1. (20 points)

(a) State the negation of each statement below.

i. If n is divisible by 14, then n is divisible by 2 and n is divisible by 7.

Answer: n is divisible by 14 and (n is not divisible by 2 or n is not divisible by
7.)
ii. For every real number r there exists a rational number ¢ such that r < g < r+1.

Answer: There exists a real number r such that for every rational number ¢,
g<rorr+12>gq.

(b) Determine the truth value of the statements below.
i. 2€P({0,1,2,3})

FALSE. Elements of P({0,1,2,3}) are sets.

ii. {0,{0,1}} € P({0,1,2,3})

TRUE. Both () and {0, 1} are elements of P({0,1,2,3})

(c) List three different partitions of the set S = {1,2,3}. Label your partitions Py, P,
and Ps3. Use correct notation.

Some examples: P, = {{1,2,3}}, P» = {{1,2},{3}}, Ps = {{1},{2,3}}

(d) Let R be an equivalence relation on S = {a, b, ¢,d} such that aRb and dRa. Circle
all of the following statements that must also be true.
i. ¢cRc (TRUE)
ii. bRd (TRUE)
iii. d € [a] (TRUE)
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2. (12 points) Prove that 13 +23 4+ 3%+ ... 4 n? = m for all n € N.

Proof: (by induction on n.)

Base Step: Let n = 1. Observe 12 = 1 = % = M Thus, the proposition holds for

n = 1.

Inductive Step: Suppose k € N, n > 1, and 13+ 23 +33 + ... + k3 = w. We must
show that 13 4+2° + 334+ -+ (k+1)® = M Observe

iﬁ = (223) +(k+1)°

=1 =1

= M + (k+1)3 by inductive hypothesis
= kQ(kj 1)’ + Ak 1_ Dl common denominator
— W (k* + 4k + 4) factor
- oy,

which is what we wanted to show.

Thus, by the method of induction, 12 +23 +33 4 ... 4 n3 = M for all n € N.
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3. (10 points) Use the method of proof by contrapositive to prove the proposition below.

Suppose a, b € Z. If (a + 1)b? is even, then a is odd or b is even.

Proof: We will prove that if a is even and b is odd, then (a + 1)b? is odd.

Suppose that a is even and b is odd. Thus, there exist integers m and n such that a = 2m
and b = 2n + 1. Thus,

(a+1)b* = (2m + 1)(2n + 1)? = 2(4mn* + 4mn +m + 2n* + 2n) + 1,

where 4mn? + 4mn + m + 2n® + 2n € Z. Thus, (a + 1)b? is odd.

4. (10 points) Use the method of proof by contradiction to proof the proposition below.

Suppose a,b € R. If a is rational and ab is irrational, then b is irrational.

Proof: Suppose a,b € R, a is rational, and ab is irrational. Further, suppose by way of
a contradiction that b is rational.

Since a and b are rational, there exist integers m,n,p,q, n # 0 and ¢ # 0 such that
a =" and b = pq. Thus, ab = :’%5, where ng # 0. Thus, ab is rational, which contradicts
the assumption that ab is irrational.

Thus, by the method of proof by contradiction, if a is rational and ab is irrational, then
b is irrational.
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5. (15 points) Let the function f : [0,00) — [6,00) be defined as f(x) = 3z* + 6. Prove
that f is a bijection.

Proof: Let f:[0,00) — [6,00) be defined as f(z) = 3z + 6.
(one-to-one) Let x, 2" € [0,00) such that f(z) = f(z’). Thus, 32% + 6 = 3(2/)> + 6. By
subtracting 6 and dividing by 3, we obtain the equation z? = (2')2. Since both z and z’
are nonnegative, x = x’. Thus, f is injective.

—6
(onto) Let y € [6,00). Pick z = yT Observe that since y > 6, we know (y—6)/3 > 0.
Thus, z € [0,00). Now,

Thus, f is onto.

Since f is one-to-one and onto, f is bijective.
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6. (15 points) Let R be a relation on R such that xRy if x — y € Z.

(a)

Prove that R is an equivalence relation.
Proof: We must show that R is reflexive, symmetric, and transitive.

(reflexive). Let x € R. Since x — 2 = 0 and 0 € Z, it follows that zRz. Thus, R is
reflexive.

(symmetric). Let z,y € R such that xRy. By the definition of R, it follows that
r—y=mn € Z. Thus, y —x = —n € Z. Thus, yRxr and we have shown that R is
symmetric.

(transitive). Let x,y, z € R such that xRy and yRz. By definition, it follows that
r—y=n&c€Zandy—z=mecZ Now,zr—z2=x—y+y—z=n+m € Z. Thus,

zRz and we have shown that R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.

State three distinct elements in [7], the equivalence class of R containing 7.

There are an infinite number of correct answers. Some include: —1+4+m, 7,1+, 2+
w3+ .
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7. (10 points) Let A, B, and C be sets. Suppose that A C B, B C C, and C C A. Prove
that A = B.

Proof: Let A, B, and C be sets such that A C B, BC C, and C' C A.
To show that A = B, we must show that A C B and B C A.
Observe that A C B by assumption.

(Show B C A.) Let b € B. Since b € B and B C C, it follows that b € C. Since b € C
and C' C A, it follows that b € A. Thus, B C A.
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8. (8 points) Demonstrate that the sets {0,1} x N and Z have the same cardinality.

n—1 ifa=0

-n ifa=1

Example: Let f:{0,1} x N — Z be defined as: f(a,n) = {
5 points extra credit Prove that your answer above is correct.

We must show that f is a bijection.

(injective) Let (a,m), (b,n) € {0,1} x N such that f(a,m) = f(b,n). There are two
possibilities: (i) a=b=0and m—1=n—1or (ii) a = b =1 and —m = —n. Both
immediately imply not only that a = b but also m = n. Thus, (a,m) = (b,n) and we
have shown that the function is injective.

(surjective) Let n € N. We consider two cases: (i) n < 0 and (ii) n > 0. If n < 0, pick
element (1,—n) € {0,1} x N. Now, f(1,—n) = —(—n) = n. If n > 0, pick element
(0,n+1) € {0,1} x N. Then, f(0,n+1) = (n+1) —1 = n. Thus, for every n € N, there
exists an (a,m) € {0,1} x N such that f(a,m) =n. Thus, f is surjective.



