

1. Review:

(a) Fill out the truth table for the biconditional statement.

P	Q	$P \Leftrightarrow Q$
T	T	
T	F	
F	T	
F	F	

(b) For **objects** A and B , how could you show that the statement below was **false**.

$$AB = 0 \text{ if and only if } A = 0 \text{ or } B = 0.$$

(c) Fill out DeMorgan's Laws

$$\sim(P \vee Q) \text{ is equivalent to } \underline{\hspace{10cm}}$$

$$\sim(P \wedge Q) \text{ is equivalent to } \underline{\hspace{10cm}}$$

2. Use a truth table to demonstrate that $\boxed{P \Rightarrow Q}$ is equivalent to $\boxed{\sim P \vee Q}$.

3. Use the equivalence above to rewrite the conditional statement in an equivalent form.

If $f'(a) = 0$, then $f(a)$ is a maximum.

4. Prove that $\sim(P \Rightarrow Q)$ is equivalent to $P \wedge \sim Q$ by constructing a string of logical equivalences that start with $\sim(P \Rightarrow Q)$ and end with $P \wedge \sim Q$. Each step must be justified by a specific, already established and referenced, logical equivalence.

A sample structure is below.

Proof:

statement 1	=	statement 2	because justification 1
	=	statement 3	because justification 2
	=	statement 4	because justification 3

5. Think up your own favorite conditional statement that you know is **false**. Call this statement R . (So, $R : P \Rightarrow Q$.)

(a) Write R as a sentence.

(b) Write $\sim R$ as a sentence using both logical structures: $\sim(P \Rightarrow Q)$ and $P \wedge \sim Q$.

6. What ideas/concepts/skills do you think this worksheet was supposed to teach you?