

1. Review

(a) $\forall n \in \mathbb{N}, 2n^2 - n \geq 1$ "For every natural number n , $2n^2 - n \geq 1$."

- universal quantifier
- big "and" statement

$$(2 \cdot 1^2 - 1 \geq 1) \wedge (2 \cdot 2^2 - 2 \geq 1) \wedge (2 \cdot 3^2 - 3 \geq 1) \wedge \dots$$

(b) $\exists n \in \mathbb{N}, 2n^2 - n > 10$ "There exists some natural number n such that $2n^2 - n > 10$."

- existentially quantified statement
- big "or" statement

$$(2 \cdot 1^2 - 1 > 10) \vee (2 \cdot 2^2 - 2 > 10) \vee (2 \cdot 3^2 - 3 > 10) \vee \dots$$

2. For each statement below, write it using universal and/or existential quantifiers. Then determine their truth values

(a) Every integer is a rational number. $\forall n \in \mathbb{Z}, n \in \mathbb{Q}$

True. $\mathbb{N} \subseteq \mathbb{Q}$.

(b) There are rational numbers whose square is rational. $\exists q \in \mathbb{Q}, q^2 \in \mathbb{Q}$

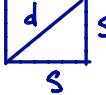
True. Example $2 \in \mathbb{Q}$ and $2^2 = 4 \in \mathbb{Q}$.

(c) $a = \sqrt{a^2}$ for all real numbers $\forall a \in \mathbb{R}, a = \sqrt{a^2}$.

False. Example $-1 \in \mathbb{R}$ and $-1 \neq 1 = \sqrt{(-1)^2}$.

(d) There are squares with integer values for the sides and the diagonals.

\exists square with sides s and diagonal d , $s \in \mathbb{Z}$ and $d \in \mathbb{Z}$.

False.  $2s^2 = d^2$. So $d = \sqrt{2}s$. Thus, if $s \in \mathbb{Z}$, then $d \notin \mathbb{Z}$. If $d \in \mathbb{Z}$, then $s = \frac{d}{\sqrt{2}} \notin \mathbb{Z}$.

(e) Every integer that is not positive must be negative.

$\forall n \in \mathbb{Z}$, if $n \neq 0$, then $n < 0$.

False. $n=0$ is not positive and is also not negative.

(f) For every real number a , there is some quadratic polynomial $p(x)$ where a is a root of $p(x)$.

$\forall a \in \mathbb{R}$, $\exists p(x) = bx^2 + cx + d$, $p(a) = 0$

True. Construct $p(x) = x^2 - a^2$

(g) For every quadratic polynomial $p(x)$, there is some real number a , where a is a root of $p(x)$.

$\forall p(x) = bx^2 + cx + d$, $\exists a \in \mathbb{R}$, $p(a) = 0$.

False. $p(x) = x^2 + 2$ has no real roots.

(h) If $r \in \mathbb{R}$, then $f(x) = \frac{x+r}{x^2+r^3}$ is continuous on \mathbb{R} . $\forall r \in \mathbb{R}$, $f(x) = \frac{x+r}{x^2+r^3}$ is continuous.

False. For $r = -1$, $x^2 + r^3 = x^2 - 1$. So $f(x)$ would be discontinuous at $x = \pm 1$.

(i) If $f: \mathbb{R} \rightarrow \mathbb{R}$ has a horizontal asymptote, then $\lim_{x \rightarrow \infty} f(x)$ is defined.
 or $\lim_{x \rightarrow -\infty} f(x)$

$\forall f: \mathbb{R} \rightarrow \mathbb{R}$, if $f(x)$ has a horizontal asymptote, then

$\lim_{x \rightarrow \infty} f(x)$ or $\lim_{x \rightarrow -\infty} f(x)$ is defined

$\forall x$, $P(x) \Rightarrow Q(x) \vee R(x)$

What we can learn from a second pass.

1. Review

$$(a) \forall n \in \mathbb{N}, 2n^2 - n \geq 1 = (2 \cdot 1^2 - 1 \geq 1) \wedge (2 \cdot 2^2 - 2 \geq 1) \wedge (2 \cdot 3^2 - 3 \geq 1) \wedge \dots$$

$$= \forall n, P(n) = R$$

What is $\sim R$? How do you negate a universally quantified statement?

We know $\sim(P \wedge Q) = \sim P \vee \sim Q$. So..

$$\sim(\forall n, P(n)) = \exists n, \sim P(n) \leftarrow \text{Look } \textcircled{2} \text{ } \star \downarrow$$

$$(b) \exists n \in \mathbb{N}, 2n^2 - n > 10 = (2 \cdot 1^2 - 1 > 10) \vee (2 \cdot 2^2 - 2 > 10) \vee (2 \cdot 3^2 - 3 > 10) \vee \dots$$

$$= \exists n, P(n) = R$$

What is $\sim R$?

$$\sim(\exists n, P(n)) = \forall n, \sim P(n) \leftarrow \text{look } \textcircled{2} \text{ } \star \downarrow$$

Now, we know either $\underline{\forall x, P(x)}$ or $\underline{\exists x, \sim P(x)}$ is true

Either $\underline{\exists x, P(x)}$ or $\underline{\forall x, \sim P(x)}$ is true.

$$(b) \text{ There are rational numbers whose square is rational. } \exists q \in \mathbb{Q}, q^2 \in \mathbb{Q}$$

True. Example $2 \in \mathbb{Q}$ and $2^2 = 4 \in \mathbb{Q}$.

\star (c) $a = \sqrt{a^2}$ for all real numbers $\forall a \in \mathbb{R}, a = \sqrt{a^2}$.

False. Example $-1 \in \mathbb{R}$ and $-1 \neq 1 = \sqrt{(-1)^2}$.

We showed: $\boxed{\exists a \in \mathbb{R}, a \neq \sqrt{a^2}}$

We showed \forall square, $s \notin \mathbb{Z}$ or $d \notin \mathbb{Z}$.

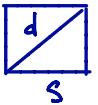
MATH 265: Introduction to Mathematical Proofs

Worksheet 6: §2.7-2.9

$$\sim(P \wedge Q) = \sim P \vee \sim Q$$

* (d) There are squares with integer values for the sides and the diagonals.

\exists square with sides s and diagonal d , $s \in \mathbb{Z}$ and $d \in \mathbb{Z}$.

False.  $2s^2 = d^2$. So $d = \sqrt{2}s$. Thus, if $s \in \mathbb{Z}$, then $d \notin \mathbb{Z}$. If $d \in \mathbb{Z}$, then $s = \frac{d}{\sqrt{2}} \notin \mathbb{Z}$.

(e) Every integer that is not positive must be negative.

$\forall n \in \mathbb{Z}$, if $n \neq 0$, then $n < 0$.

False. $n=0$ is not positive and is also not negative.

$$\exists n, \sim(P \Rightarrow Q) = \exists n, P(n) \wedge \sim Q(n)$$

(f) For every real number a , there is some quadratic polynomial $p(x)$ where a is a root of $p(x)$.

$$\forall a \in \mathbb{R}, \exists p(x) = b^2 + cx + d, \quad p(a) = 0$$

True. Construct $p(x) = x^2 - a^2$

order matters $\forall a \exists p(x), p(a) = 0 \neq \exists p(x), \forall a, p(a) = 0$

(g) For every quadratic polynomial $p(x)$, there is some real number a , where a is a root of $p(x)$.

* $\forall p(x) = b^2 + cx + d, \exists a \in \mathbb{R}, \quad p(a) = 0$.

False. $p(x) = x^2 + 2$ has no real roots.

We showed $\exists p(x), \forall a \in \mathbb{R}, p(a) \neq 0$.

* (h) If $r \in \mathbb{R}$, then $f(x) = \frac{x+r}{x^2+r^3}$ is continuous on \mathbb{R} . $\forall r \in \mathbb{R}, f(x) = \frac{x+r}{x^2+r^3}$ is continuous.

$P \Rightarrow Q \equiv \forall \text{ acceptable } P, Q$

conditional statements can be represented as universally quantified statements.

(i) If $f: \mathbb{R} \rightarrow \mathbb{R}$ has a horizontal asymptote, then $\lim_{x \rightarrow \infty} f(x)$ is defined.

$\forall f: \mathbb{R} \rightarrow \mathbb{R}$, if $f(x)$ has a horizontal asymptote, then

$\lim_{x \rightarrow \infty} f(x)$ or $\lim_{x \rightarrow -\infty} f(x)$ is defined

$$\forall x, P(x) \Rightarrow Q(x) \vee R(x)$$