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2. For each statement below, write it using universal and/or existential quantifiers. Then determine
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(d) There are squares with integer values for the sides and the diagonals.
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(e) Every integer that is not positive must be negative.
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(f) For every real number a, there is some quadratic polynomial p(x) where a is a root of p(x).
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(g) For every quadratic polynomial p(x), there is some real number a, where a is a root of p(x).
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(f) For every real number a, there is some quadratic polynomial p(x) where a is a root of p(x).
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(g) For every quadratic polynomial p(x), there is some real number a, where a is a root of p(x).
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