

1. Review

$$(a) \sim (\forall n \in \mathbb{N}, 2n^2 - n \geq 1)$$

$$(b) \sim (\exists n \in \mathbb{N}, 2n^2 - n > 10)$$

2. From the previous sheet:

d. There are squares with integer values for the sides and the diagonals.

$$\exists \text{ squares with side } s \text{ and diagonal } d, (s \in \mathbb{Z} \wedge d \in \mathbb{Z})$$

We concluded it was false. What do we need to show?

e. Every integer that is not positive must be negative.

$$\forall n \in \mathbb{N}, \sim (n > 0) \Rightarrow (n < 0)$$

We concluded it was false. What do we need to show?

g. For every quadratic polynomial $p(x)$, there is some real number a , where a is a root of $p(x)$.

$$\forall p(x) \in \mathbb{P}_2(x), \exists a \in \mathbb{R}, p(a) = 0, \quad \text{where } \mathbb{P}_2(x) \text{ is the set of degree 2 polynomials}$$

We concluded it was false. What do we need to show?

3. Logical Inference:

4. Modus Ponens

5. The most common fallacy (invalid argument):

6. For each argument below, (a) determine whether it is valid or invalid, (b) write an argument in English that models the logical structure of the argument.

$$(a) \frac{P \Rightarrow Q}{\frac{\sim P}{\sim Q}}$$

$$(b) \frac{P \Rightarrow Q}{\frac{\sim Q}{\sim P}}$$

$$(c) \frac{P \vee Q}{\frac{\sim P}{Q}}$$

7. Show that $P \Rightarrow Q$ is logically equivalent to $\sim Q \Rightarrow \sim P$. (Note: $\sim Q \Rightarrow \sim P$ is called the **contrapositive** of $P \Rightarrow Q$.)

8. Rewrite each theorem below with its equivalent contrapositive statement. Note that the “Let...” sentence does not change.

(a) If two sides of a triangle are congruent (aka of equal length), then the two angles opposite those sides are congruent (aka are equal in measure).

(b) Let $f(x)$ be defined on the interval $[a, b]$. If $f(x)$ is continuous on $[a, b]$, then for every y -value, y_0 , strictly between $f(a)$ and $f(b)$ there exists an x -value, x_0 , in (a, b) such that $f(x_0) = y_0$.