

1. Review

$$(a) \sim (\forall n \in \mathbb{N}, 2n^2 - n \geq 1) = \exists n \in \mathbb{N}, 2n^2 - n < 1$$

$$(b) \sim (\exists n \in \mathbb{N}, 2n^2 - n > 10) = \forall n \in \mathbb{N}, 2n^2 - n \leq 10$$

2. From the previous sheet:

d. There are squares with integer values for the sides and the diagonals.

$$\exists \text{ squares with side } s \text{ and diagonal } d, (s \in \mathbb{Z} \wedge d \in \mathbb{Z})$$

We concluded it was false. What do we need to show?

$\nexists \text{ square, } s \in \mathbb{Z} \vee d \in \mathbb{Z}.$

Argument: We know $2s^2 = d^2$. If $s \in \mathbb{Z}$, then $d = \sqrt{2s^2} = \sqrt{2}s \notin \mathbb{Z}$.

If $d \in \mathbb{Z}$, then $s = \sqrt{\frac{d^2}{2}} = \frac{d}{\sqrt{2}} \notin \mathbb{Z}$.

e. Every integer that is not positive must be negative.

$$\forall n \in \mathbb{N}, \sim (n > 0) \Rightarrow (n < 0)$$

We concluded it was false. What do we need to show?

$\exists n \in \mathbb{N}, \sim (n > 0) \wedge \sim (n < 0) = \exists n \in \mathbb{N}, n \leq 0 \wedge n \geq 0.$

Argument. Pick $n=0$

g. For every quadratic polynomial $p(x)$, there is some real number a , where a is a root of $p(x)$.

$$\forall p(x) \in \mathbb{P}_2(x), \exists a \in \mathbb{R}, p(a) = 0, \text{ where } \mathbb{P}_2(x) \text{ is the set of degree 2 polynomials}$$

We concluded it was false. What do we need to show?

$\exists p(x), \forall a \in \mathbb{R}, p(a) \neq 0.$

Argument. Pick $p(x) = x^2 + 1$. Since $\sqrt{-1} \notin \mathbb{R}$, $p(x)$ has no roots.

3. Logical Inference:

- How to know a collection of true statements implies another statement.. or $\neg T$!

- Focus on logical structure of an argument: valid or not valid.

- Ex: P_1 This is a valid argument if

$$\begin{array}{c} P_1 \\ P_2 \\ \vdots \\ P_n \\ \hline P_{n+1} \end{array}$$

$$(P_1 \wedge P_2 \wedge \dots \wedge P_n) \Rightarrow P_{n+1} \quad \text{for all possible input truth values.}$$

- The argument is invalid if there are any truth values for which all hypotheses are true and conclusion is false.

- all possible truth values of input

- Check truth values of all hypotheses

4. Modus Ponens

$$\begin{array}{c} P \Rightarrow Q \\ P \\ \hline \therefore Q \end{array}$$

Ex] If $f(x)$ is a polynomial, then $\lim_{x \rightarrow \infty} f(x) = \infty$. Since $f(x) = \sin(x)$ is a polynomial, we can

conclude that $\lim_{x \rightarrow \infty} \sin x = \infty$.

[A logically valid argument...]

[It's the hypotheses that are the bolds.]

P	Q	$P \Rightarrow Q$	P	Q
T	T	T	T	T
T	F	F	T	F
F	T	T	F	T
F	F	T	F	F

Only consider rows where both hypotheses are true

For these rows, check that the conclusion is true ✓
Thus, it's valid.

5. The most common fallacy (invalid argument):

$$\begin{array}{c} P \Rightarrow Q \\ Q \\ \hline \therefore P \end{array}$$

- Need to find truth values for P and Q such that ① $P \Rightarrow Q$ is true and ② Q is true but ③ P is not true
- Ans: $Q=T, P=F$, Then $P \Rightarrow Q$ is $F \Rightarrow T$ which is true.

Most common Version:

NTS $A=B$.

"Proof" $A=B \Rightarrow C=D \Rightarrow E=F \Rightarrow 1=1$ ✓

So $A=B$.

one more
comment →

You can see that this is not valid by making an argument for which all the hypotheses are true but the conclusion is incorrect.

If $f(x)$ is differentiable, then $f(x)$ is continuous.
Since $f(x) = |x|$ is continuous, we can conclude
 $f(x) = |x|$ is differentiable.

Observe: Complete sentences with correct grammar.
No sentence begins with a symbol.

6. For each argument below, (a) determine whether it is valid or invalid, (b) write an argument in English that models the logical structure of the argument.

$$(a) \frac{P \Rightarrow Q}{\sim P \quad \sim Q}$$

INVALID

Choose $P=F, Q=T$
 Then $P \Rightarrow Q$ is $F \Rightarrow T$ which is true and
 $\sim P$ is true. So both hypotheses are true.
 But $\sim Q$ is false.

Argument: If $f(x)$ is differentiable, then $f(x)$ is continuous.

Since $f(x)=|x|$ is not differentiable everywhere,
 we can conclude $f(x)=|x|$ is not continuous.

$$(b) \frac{P \Rightarrow Q}{\sim Q \quad \sim P}$$

VALID

P	Q	$P \Rightarrow Q$	$\sim Q$	$\sim P$
T	T	T	F	F
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

✓

Argument: If $x \geq 10$, then $x \geq 5$. Since $a < 5$, we can
 conclude $a < 10$.

$$(c) \frac{P \vee Q}{\sim P \quad Q}$$

VALID

P	Q	$P \vee Q$	$\sim P$	Q
T	T	T	F	T
T	F	T	F	F
F	T	T	T	T
F	F	F	T	F

✓

Argument: All materials are in Canvas or on the webpage.
 The quiz is not in Canvas. Thus, the quiz is
 on the webpage.

7. Show that $P \Rightarrow Q$ is logically equivalent to $\sim Q \Rightarrow \sim P$. (Note: $\sim Q \Rightarrow \sim P$ is called the **contrapositive** of $P \Rightarrow Q$.)

8. Rewrite each theorem below with its equivalent contrapositive statement. Note that the “Let...” sentence does not change.

(a) If two sides of a triangle are congruent (aka of equal length), then the two angles opposite those sides are congruent (aka are equal in measure).

If the angles opposite two sides of a triangle are unequal, then the sides are not congruent.

(b) Let $f(x)$ be defined on the interval $[a, b]$. If $f(x)$ is continuous on $[a, b]$, then for every y -value, y_0 , strictly between $f(a)$ and $f(b)$ there exists an x -value, x_0 , in (a, b) such that $f(x_0) = y_0$.

Let $f(x)$ be defined on $[a, b]$.

If there exists a y_0 strictly between $f(a)$ and $f(b)$ such that for every $x_0 \in (a, b)$, $f(x_0) \neq y_0$, then $f(x)$ is not continuous on $[a, b]$.