INTRODUCTION TO THE DETERMINANT

1. Make a list of statements equivalent to: The $n \times n$ matrix A is nonsingular.

2. Make the analogous list for: The $n \times n$ matrix A is singular.

3. Cor 4.11 (pg 259) The matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is nonsingular if and only if

The Definition of the Determinant (from 4.3.1 text)

4. **definition:** Let $A = (a_{ij})$ be an $n \times n$ matrix. Then A_{ij} is the $(n - 1) \times (n - 1)$ matrix obtained by deleting the *i*th row and *j*th column from *A*.

5. **example:** Find
$$B_{23}$$
 for $B = \begin{pmatrix} 1 & 2 & 4 \\ 4 & 1 & -1 \\ 2 & -3 & 5 \end{pmatrix}$.

- 6. **definition:** The *determinant* of the $n \times n$ matrix $A = (a_{ij})$, denoted by det(A), is defined as follows.
 - For $A = (a_{11}), det(A) = a_{11}$
 - For $n \ge 2$, det(A) is the sum of *n* terms of the form $\pm a_{1j} det(A_{1j})$, with the plus and minus signs alternating starting with a plus. Specifically,

$$det(A) = a_{11} det(A_{11}) - a_{12} det(A_{12}) + a_{13} det(A_{13}) - \dots + (-1)^{n-1} a_{1n} det(A_{1n})$$

7. Find det(B).