
MIDTERM II REVIEW

Logistics:
The final exam will be 2 hours. You may bring in a single sheet of hand written notes. You should bring
some form of technology that will allow you to: put a matrix into reduced row echelon form, to multiply
matrices, and to find determinants of matrices.

There may be problems for which you would be required to demonstrate how a computation is
performed by hand, though you would always be in the position of being able to check your answer
using technology. (e.g. Show how to find the determinant of the matrix A by hand.)

TOPICS FROM MIDTERM I

Chapter 1: Linear Systems

Section 1.1.1 Gauss’s Method

Terminology: linear combination, elementary row operations, Gauss’s Method, echelon form

Section 1.1.2 Describing the Solution Set

Terminology: echelon form, leading 1’s, parametrized, matrix echelon form, column vector, row
vector, components, scalar multiplication

Section 1.1.3 General = Particular + Homogeneous

Terminology: homogeneous system, particular solution, homogeneous solution

Theorems/Lemmas
(3.1) Every solution set can be expressed as the sum of a particular solution and the solution set of a
homogeneous system.
(3.7) For a linear system and for any particular p, the solutions set equals {p+h|hsatisfies the associated homogeneous system}.
(3.10) Solutions sets of linear systems are either empty, unique, or have infinitely many elements.

Section 1.3.1 Gauss-Jordan Reduction

Terminology: Gauss-Jordan Reduction, reduced row echelon form, row equivalent matrices,

Theorems/Lemmas
(1.5) Elementary row operations are reversible.

Section 1.3.2 The Linear Combination Lemma

Theorems/Lemmas:
(2.3) Linear combinations of linear combinations are linear combinations.
(2.4) Row equivalent matrices have rows that are linear combinations of each other. That is, if A′ =
rref(A), then the rows of A′ are a linear combinations of the rows of A.
(2.5) The nonzero rows of a matrix in reduced echelon form are not linear combinations of each other.
Note that with the language of Section 2.2.1, we would restate this as: The nonzero rows of a matrix in
reduced echelon form are linearly independent.
(2.6) The reduced echelon form of a matrix is unique (unlike the echelon form of a matrix).
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Chapter 2: Vector Spaces

Section 2.1.1 Definition and Examples

Terminology: vector space, trivial vector space

Theorems/Lemmas:
(1.16) In any vector space V, for any ~v ∈ V and r ∈ R, the following are true: 0 · ~v = ~0 and r · ~0 = ~0 and
−1 · ~v + ~v = ~0.

Section 2.1.2 Subspaces and Spanning Sets

Terminology: subspace, span

Theorems/Lemmas:
(2.9) Any set that is closed under r1 ~v1 + r2 ~v2, for every r1, r2 ∈ R and every ~v1, ~v2.
(2.15) In a vector space, the span of any subset of vectors is a subspace.

Section 2.2.1 Linear Independence

Terminology: linear dependence, linear independence

Theorems/Lemmas:
(1.2) Let S be a subset of the vector space V. The addition of vector ~v to S doesn’t change span(S) occurs
if and only if ~v is already in span(S). (That is, ~v can be written as a linear combination of vectors in S.
That is, S ∪ {~v} is linearly dependent)
(1.3) The deletion of the vector ~v from S doesn’t change span(S) can occur if and only if ~v is already in
span(S).
(1.5) A subset S = {~s1, ~s2, · · · , ~sn} of a vector space is linearly independent if and only if the only solu-
tion to the system c1 ~s1 + c2 ~s2 + · · ·+ cn ~sn = ~0 is c1 = c2 = · · · = cn = 0.
(1.14) A set of vectors is linearly independent if and only if the removal of any vector from the set results
in a smaller span.
(1.15) Let S be a set of vectors and let ~v 6∈ S. The set S ∪ ~v is linearly independent if and only if ~v 6∈ [S].
(1.20) Any subset of a linearly independent set is also linearly independent. Any superset of a linearly
dependent set is also linearly dependent.

Section 2.3.1 Basis

Terminology: basis, representation of ~v with respect to a basis B.

Theorems/Lemmas:
(1.12) In any vector space V , a subset B is a basis if and only if every vector of V can be expressed as a
linear combination of B in exactly one way.

Section 2.3.2 Dimension

Terminology: finite-dimensional vector space, dimension

Theorems/Lemmas:
(2.3) Given two bases for the same vector space V , it is possible to exchange one vector from one basis
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with a vector from the other basis and still have a basis for V.
(2.4) If V is finite-dimensional, then all bases have the same number of vectors.

(2.10) No linearly independent set from a finite dimensional vector space V can have more vectors than
dim(V ).
(2.12) Any linearly independent set can be expanded to a basis.
(2.13) Any set that spans the vector space V can be reduced to a basis.
(2.14) If dim(V ) = n and S is a subset of V with n vectors, then S spans V if and only if S is linearly
independent. (Restate in a practical manner, if dim(V ) = n and S is a subset of V with n vectors, then
determining whether S is a bases is reduced to showing only ONE of linear independence OR span-
ning.)
(implied) Every set that spans the finite-dimensional vector space V with dimension n must have at
least n vectors.
Section 2.3.3 Vector Spaces and Linear Spaces

Terminology: column space, row space, column rank, row rank, rank of a matrix, transpose of a
matrix

Theorems/Lemmas:
(3.4) The nonzero rows of a matrix in rref are linearly independent.
(3.10) Row operations do not change the column rank.
(3.11) Row rank equals column rank.
NOTE: We are omitting the last two results from this midterm. We will revisit these post midterm 1.
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Sample Problems

1. Determine if the vector (1, 2, 3,−2) is in the span of the vectors (1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 1, 2).

2. Solve each system below. Write your answer in parametrized form. Show your work.

(a)

{
2x+ y − z = 1

4x− y = 3

(b)


x − z = 1

−w + y + 2z = 3

−w + x+ 2y + 3z = 7

(c)


x− y + z = 0

w + y = 0

w + 3x− 2y + 3z = 0

−w − y = 0

3. For each system above, describe the solutions as a particular and homogeneous solution.

4. For which values of k are there no solutions, many solutions or a unique solution.

x− 2y = 3
2x+ ky = 6

5. Give examples of two 3 by 3 matrices in reduced echelon form that have their leading ones in the
same columns but that are not row equivalent. Explain why your answer is correct.

6. Determine whether or not the following are vector spaces.

(a) {a0 + a1x : a0 + 2a1 = 0} under the usual operations of polynomial addition and scalar
multiplication

(b) {
(
a b
c d

)
: a = b, c + d = 1} under the usual operations of matrix addition and scalar

multiplication

7. Determine if the set {


1
1
2
0

 ,


0
1
1
0

 ,


2
0
1
1

 ,


1
0
0
1

 , } spans all of R4.

8. Pick a random 4 by 5 matrix A. Find a basis for the row space of A. Find a basis for the column
space of A. Determine the rank of A.

9. Demonstrate that the set S = {1, 1 + x, x + x2, 2 + x3, x + 2x3}, a subset the vector space P3, is
linearly dependent but that is spans P3. Find a subset of S that forms a basis of P3, call is B. Write
the polynomial 1 + x− x2 − x3 with respect to the basis B.
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TOPICS FROM MIDTERM II

Section 3.1.1: Definition of Isomorphisms

Terminology: isomorphism, image

Lemmas/Theorems:
Lemma 1.10: An isomorphism maps the zero vector of the domain to the zero vector of the codomain.
Lemma 1.11: This give alternate ways to demonstrate a map is linear.

Sample Problems:
Given a map, find the image of elements in the domain (1.13).
Verify that a given map is (or is not) an isomorphism (1.16, 1.17).

Section 3.1.2: Dimension Characterizes Isomorphism

Lemmas/Theorems:
Theorem 2.3: Vector spaces are isomorphic if and only if they have the same dimension.

Sample Problems:
Observe that you can determine if two vector spaces are or are not isomorphic based on their dimension.
(2.10)

Section 3.2.1: Definition of Homomorphism

Terminology: homomorphism, zero homomorphism, linear extension of a map

Lemmas/Theorems:
Lemma 1.6: A linear map send the zero vector of the domain to the zero vector of the range.
Theorem 1.9: A homomorphism is determined by the action on a basis.

Sample Problems:
Determine whether or not a given map is linear (1.18, 1.19)
Verify the a particular map is a homomorphism (1.22)

Section 3.2.2: Range Space and Null Space

Terminology: range space, rank of a homomorphism, null space, nullity of a homomorphism, image
(again), inverse image

Lemmas/Theorems:
Lemma 2.1: Under a homomorphism, the image of a subspace of the domain is a subspace of the
codomain. In particular, the range of the homomorphism is a subspace of the codomain.
Lemma 2.10: For any homomorphism, the inverse image of a subspace of the range is a subspace of the
domain. In particular, the inverse image of the zero vector in the range is a subspace (ie null space) of
the domain.
Theorem 2.14: For any linear map, the rank of the map plus the nullity of the map must equal the di-
mension of the domain.
Corollary 2.17: The rank of a linear map is less than or equal to the dimension of the domain and equal-
ity holds if and only if the nullity is zero.
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Lemma 2.18: Under a linear map, the image of a set of linearly dependent vectors must be linearly de-
pendent.
Theorem 2.20: This is a “The following are equivalent...” list starting with the statement “h : V → W is
one to one” where dim(V ) = n.

Sample Problems:
Determine whether or not a vector is in the range or null space of a linear map. (2.21)
Determine the range space or null space of a linear map (and thus the rank and nullity of the map).
(2.23, 2.24, 2.25)
Find the inverse image of a vector (2.30)

Section 3.3.1: Representing Linear Maps with Matrices

Terminology: the matrix representation of a linear map with respect to bases for domain and codomain
(RepB,D(h)), the matrix-vector product (which we now interpret as matrix multiplication...)

Sample Problems:
How to use the matrix representation to find the image of a vector. (1.13)
How to use the image of basis elements to find the image of a vector (1.17)
Find the matrix representation of a linear map with respect to given bases (1.19, 1.21, 1,27*) .
*Note that because of sections 3.5.1 and 3.5.2, we now have a different way of thinking about 1.27.

Section 3.3.2: Any Matrix Can Represent a Linear Map

Terminology: a nonsingular linear map

Lemmas/Theorems:
Theorem 2.2: Any matrix can be interpreted as a representation of a linear map. The representation is
not unique as it depends on the bases.
Quick Reminder: If H is an m × n matrix that represents a linear map from V to W , then dim(W ) = m
and dim(V ) = n.
Theorem 2.4: The rank of a matrix equal the rank of any linear map it represents.
Corollary 2.6: Let h be a linear map represented by matrix H . The map h is onto if and only if rank of
H equal the number of rows of H. The map h is one to one if and only if rank of H equal the number of
columns of H.

Sample Problems:
Determine if a map is singular or nonsingular from its matrix representation (2.13)
Determine the image of a vector given a matrix representation and corresponding bases. (2.14, 2.15, 2.16)

Section 3.4.1: Sums and Scalar Products of Matrices

Terminology: sum of two matrices, scalar multiple of two matrices

Lemmas/Theorems:
Theorem 1.4: This states the expected relationship between matrix addition/scalar multiplication of ma-
trices to that of linear maps.

Sample Problems:
Be able to perform matrix addition and scalar multiplication of matrices.
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Section 3.4.2: Matrix Multiplication

Terminology: matrix multiplication

Lemmas/Theorems:
Theorem 2.7: A composition of linear maps is represented by matrix multiplication of their respective
representations.
Theorem 2.12: Matrix multiplication (if defined) is associative and has the expected distributive laws.

Sample Problems:
Be able to perform matrix multiplication by hand. (2.14)
Be able to find the matrix of a composition of linear functions using matrix representations. (2.19)

Section 3.4.3: Mechanics of Matrix Multiplication

Terminology: main diagonal, identity matrix, diagonal matrix, permutation matrix, elementary re-
duction matrices

Lemmas/Theorems:
Corollary 3.23: Elementary row and column operations can be performed with a sequence of products
of elementary reduction matrices

Sample Problems:
Find the elementary reduction matrix such that appropriate multiplication performs a specific row or
column operation. (3.27)

Section 3.4.4: Inverses

Terminology: invertible matrix,

Lemmas/Theorems:
Theorem 4.3: A matrix is invertible if and only if it is nonsingular.
Lemma 4.7: A matrix is invertible if and only if it can be written as a product of elementary reduction
matrices.

Sample Problems:
Be able to find an inverse of a matrix using only the reduced row echelon operator and be able to determine
that no inverse exists (4.15).
Be able to use matrix algebra (and inverses) to solve matrix problems. (4.18)

Section 3.5.1 & 3.5.2: Changing Representations of Vectors and Linear Maps

Terminology: change of basis matrix (RepB,D(id)), matrix representation of a linear map with re-
spect to given bases (again) RepB,D(id)

Lemmas/Theorems:
Lemma 1.5: A matrix is a change of basis matrix if and only if it is nonsingular.
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Sample Problems:
Find the change of basis matrix (RepB,D(id)) given B and D. (S 3.5.1 #1.9)
Be able to use a change of basis matrix (S 3.5.1 #1.12)
Be able to change the matrix representation of a linear map from one set of bases to another (S 3.5.2
#2.14, 2.17)

TOPICS AFTER MIDTERM II

Sections 5.2.1, 5.2.2, 5.2.3

Terminology: eigenvectors, eigenvalues, eigenspace, characteristic equation, similar matrices, diag-
onalization

Lemmas/Theorems:
Theorem: If A is triangular, then its eigenvalues are the entries on its main diagonal.
textbfTheorem 3.18 §5.2.3: Let A be an n× n matrix with eigenvectors ~v1, ~v2, · · · , ~vk associated with dis-
tinct eigenvalues λ1, λ2 · · · , λk. Then the set of eigenvectors {~v1, ~v2, · · · , ~vk} is linearly independent.
Theorem: The square matrix A is nonsingular if and only if 0 is not an eigenvalue of A.
Theorem: An n× n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Define P to be the n× n matrix such that its columns consist of n linearly independent eigenvectors
of A. Then

A = PDP−1

where D is a diagonal matrix such that the entries on the main diagonal are the eigenvalues associated
with the eigenvectors of the columns of P.

Sample Problems:

• Determine if 5 is an eigenvalue of the matrix

6 −3 1
3 0 5
2 2 6

.

• Determine if
(
1
4

)
is an eigenvector of

(
−3 1
−3 8

)

• Determine the eigenvalues of the matrix

 4 0 0
−2 1 0
5 3 4

 and find a basis for the eigenspaces associ-

ated with each eigenvalues.

• Find the characteristic polynomial and the eigenvalues of the matrix
(
7 −2
2 3

)
.

• Determine if the matrix


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 −3

 is diagonalizable. If it is, diagonalize it.
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Let A be an n× n matrix.

A is nonsingular. A is singular.
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