Math 314 Midterm 1 Fall 2022

Name:

Rules:

You have one hour to complete the exam.

Partial credit will be awarded, but you must show your work.

You may have a single handwritten sheet of notes.

Except for problem 1, you may use technology to find the reduced echelon form of a matrix.

Turn off anything that might go beep during the exam.

Good luck!

1. (15 points) Use Gauss-Jordan reduction to find the reduced echelon form of the matrix A below. You must show your work and state the row operations you are performing.

$$
A = \begin{pmatrix} 2 & -2 & 2 & 8 \\ 1 & 0 & 2 & 6 \\ 0 & 2 & 0 & 1 \end{pmatrix} \xrightarrow{\frac{1}{2}r_1 \rightarrow r_1} \begin{pmatrix} 1 & -1 & 1 & 4 \\ 1 & 0 & 2 & 6 \\ 0 & 2 & 0 & 1 \end{pmatrix} r_2 - r_1 - r_2 \begin{pmatrix} 1 & -1 & 1 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 0 & 1 \end{pmatrix}
$$

\n
$$
r_1 + r_2 \rightarrow r_1 \begin{pmatrix} 1 & 0 & 2 & 6 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -1 & -3 \end{pmatrix} r_1 + r_3 \rightarrow r_1 \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & -2 & -3 \end{pmatrix}
$$

\n
$$
r_3 - 2r_2 \rightarrow r_3 \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} \end{pmatrix}
$$

- 2. (14 points) Let $T = \{a_0 + a_1x + a_2x^2 + a_3x^3 : a_0 + a_1 = a_3 \text{ and } a_2 = 0\}$ be a subset of, \mathcal{P}_3 , the vector space of all polynomials of degree 3 or less.
	- Is T a **subspace** of P_3 ? Justify your answer.

Note that a complete answer is not simply a computation (or computations) but includes and explanation in words indicating how that computation is used to derive your conclusion.

(1)
$$
\mu_{ay}\perp
$$
 Answer: Yes. Justification: Show $T = span(S)$ for
appropriate S.

$$
T = \left\{ a_o + a_1 x + (a_o + a_1)x^3 : a_o, a_i \in \mathbb{R}^2 \right\} = \left\{ a_o (1 + x^3) + a_1 (x + x^3) : a_o, a_i \in \mathbb{R} \right\}
$$

$$
= span \left(\frac{\sum 1 + x^3}{x^3} x + x^3 \right). Since T can be written as a span of+ he set $\sum 1 + x^3 x + x^3$ it must be asabspace.
$$

$$
\begin{aligned}\n\textcircled{2} \text{ way2:} & \text{Show } T \text{ is closed under } + \text{ and scalar } \cdot \\
\textcircled{3} \text{ or } T &= \left\{ a_{0} + a_{1}x + (a_{0} + a_{1})x^{3} : a_{0}, a_{1} \in \mathbb{R} \right\}.\n\end{aligned}
$$
\n
$$
\text{Let } a_{0} + a_{1}x + (a_{0} + a_{1})x^{3} \text{ both } x + (b_{0} + b_{1})x^{3} \text{ be in } T.\n\text{Then } (a_{0} + a_{1}x + (a_{0} + a_{1})x^{3}) + (b_{0} + b_{1}x + (b_{0} + b_{1})x^{3})\n= (a_{0} + b_{0}) + (a_{1} + b_{1})x + (a_{0} + b_{1})x^{3} \text{ is also in } T.
$$

• Let
$$
r \in \mathbb{R}
$$
.
\nThen $r(a_0+a_0x+a_0x^3) = ra_0 + ra_1x + (ra_0+ra_1)x^3$
\nis also in T.

Math 314: Midterm 1 Fall 2022

3. (18 points) Let
$$
A = \begin{pmatrix} 1 & 1 & 0 & 2 & 1 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 2 & -2 & 0 & 0 \\ 1 & 3 & -2 & 1 & -1 \end{pmatrix}
$$
.

(a) Find a basis for the column space of *A*.

$$
AT = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 3 \\ 0 & 1 & -2 & -2 \\ 2 & 2 & 0 & 1 \\ 1 & 1 & 0 & -1 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

B as is : $\left\langle \begin{pmatrix} 1 \\ 0 \\ z \\ z \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\rangle$

- (b) What is the rank of the matrix *A*.
- (c) Give an example of a vector \vec{v} that is not in the column space of *A* and demonstrate that your example is correct.

 $\bar{\mathbf{v}}$

8

Claim
$$
\overline{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$
 is not in column space of A.
\nClaim: No C₁, C₂, C₃ so that C₁ $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ + C₂ $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ + C₃ $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ - C₁ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
\nOR $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 2 & -2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ **ref** $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. So the system box
\n $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ **to** Solution

4. (18 points) Consider the system of linear equations below.

$$
\begin{cases} w + x + y + z = 5 \\ -w + x - y + z = 5 \\ w + x - z = 1 \end{cases}
$$

(a) Solve the system of linear equations and express your answer in vector form.

$$
\begin{pmatrix} 1 & 1 & 1 & 15 \ -1 & 1 & -1 & 15 \ 1 & 1 & 0 & -1 & 1 \ \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 0 & -2 & -4 \ 0 & 1 & 0 & 1 & 5 \ 0 & 0 & 1 & 2 & 4 \ \end{pmatrix} \xrightarrow{S_{0}} \begin{pmatrix} x \ y \ z \ \end{pmatrix} = \begin{pmatrix} 2w-4 \ -w+5 \ w \ \end{pmatrix}
$$

\n
$$
W = \begin{cases} \begin{pmatrix} -4 \ 5 \end{pmatrix} + w \begin{pmatrix} 2 \ -1 \ \end{pmatrix} : w \in \mathbb{R} \end{cases}
$$

$$
W = \begin{cases} \begin{pmatrix} -1 \\ 5 \\ 4 \end{pmatrix} + \omega \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} : \omega \in \mathbb{R} \end{cases}
$$

(b) In your answer above, identify the particular solution and homogeneous solution.

(b) In your answer above, identify the particular solution and homogeneous solution.
\n
$$
\operatorname{Particular}: \overrightarrow{\varphi} = \begin{pmatrix} -\frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}
$$
, *homogeneous* $\overrightarrow{h} = \begin{pmatrix} 2 \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}$. $\omega \in \mathbb{R}$
\n(c) Show that the solution set you found in part (a) is **not** a vector space under the standard vector and scalar multiplication in \mathbb{R}^4 .

(c) Show that the solution set you found in part (a) is **not** a vector space under the standard vector addition and scalar multiplication in \mathbb{R}^4 . \mathbf{r}

① way 1 :
$$
\overline{O}
$$
 ∉ W. (no zero vector.) The only way to make
4th coordinate zero, is to choose w=0. But if w=0, then
none of the other coordinates are zero.

5. (10 points) Do the vectors
$$
\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right\}
$$
 span the space $M_{2\times2}$? Justify your answer.
\nWe must find C_1, C_2, C_3, C_4 , S_6 \downarrow \uparrow C_4 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + C_3 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + C_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
\nSo $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & c \\ 0 & 0 & 1 & 0 & c \\ 1 & 0 & 1 & 0 & c \\ 0 & 0 & 0 & 1 & c \\ 0 & 0 & 0 & 0 & c \end{pmatrix} \xrightarrow{f \infty}$ We have $\frac{1}{2} \times \frac{1}{2}$. We will have $\frac{1}{2} \times \frac{1}{2}$ and $\frac{1}{2} \times \frac{1}{2}$.
\nWe will have $M_{2\times2}$ has dimension 4.
\n $\frac{1}{2} \times \frac{1}{2} \times \$

6. (10 points) The vectors $B = \langle 1, 1 + x, 2x^2 \rangle$ form a basis for \mathcal{P}_2 the vector space of all polynomials of degree 2 or less. Write the representation of the vector $2 - 4x + 5x^2$ in terms of the basis *B*.

$$
Way 1: by inspection: repB(\vec{v}) = \begin{pmatrix} 6 \\ -4 \\ 5/2 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \\ 5/2 \end{pmatrix} = 6 - 4 - 4x + 5x^2
$$

$$
\frac{way^{2}}{w \cdot w \cdot a+b} \cdot c_{1}(1) + c_{2}(1+x) + c_{3}(2x^{2}) = 2 - 4x + 5x^{2} \quad \text{or}
$$
\n
$$
(c_{1}+c_{2}) + c_{2}x + 2c_{3}x^{2} = 2 - 4x + 5x^{2}
$$
\n
$$
c_{0}: c_{1} + c_{2} = 2
$$
\n
$$
c_{2} = -4 \quad \text{Solve by in specific order by}
$$
\n
$$
2c_{3} = 5
$$
\n
$$
c_{1} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}
$$

7. (15 points) Let $S = {\vec{s_1}, \vec{s_2}, \vec{s_3}, \cdots, \vec{s_{10}}}$ be a subset of vectors from the vector space *V*. Assume that the the linear equation

$$
c_1\vec{s_1} + c_2\vec{s_2} + c_3\vec{s_3} + \cdots + c_{10}\vec{s_{10}} = \vec{0}
$$

has $c_1 = 2$, $c_2 = 5$, $c_3 = -4$, $c_4 = c_5 = \cdots = c_{10} = 0$ as a solution.

(a) Can you conclude that *S* is linearly dependent or linearly independent? Why or why not? Explain your reasoning.

^K -(/-%F."/C 0FOF%0F%5 XFJ.I(F 5LF"F FV-(5(. %1%5"-k-./ (1/I5-1% ⁵¹ 5LF FiI.5-1% #

(b) What can you conclude about $[S - \{\vec{s_1}\}]$ and $[S]$? Are they equal? Is one strictly smaller than the other? Do you have enough information to draw a conclusion? Explain your reasoning.

$$
[S - A_1] = [S]
$$
. Since \overline{S} , can be written as a linear combination of $S - \overline{S}$, we know $S, \in [S]$. So $[S - \overline{S},] = [S]$.

(c) Is the given solution (namely that $c_1 = 2$, $c_2 = 5$, $c_3 = -4$, $c_4 = c_5 = \cdots = c_{10} = 0$) unique? Do you have enough information to draw a conclusion? Explain your reasoning.

No.
$$
C_1 = C_2 = ... = C_{10} = 0
$$
 is also a solution.

Extra Credit: (5 points) Determine whether the vectors $f(x) = x^2$, $g(x) = 2^x$, and $h(x) = 3^x$ are linearly independent in the vector space of functions from $\mathbb R$ to $\mathbb R$. Justify your answer.

Extra Credit: (5 points) Determine whether the vectors $f(x) = x^2$, $g(x) = 2^x$, and $h(x) = 3^x$ are linearly independent in the vector space of functions from $\mathbb R$ to $\mathbb R$. Justify your answer.

Claim: linearly independent.
\nWe need to show that
$$
c_1x^2 + c_22^x + c_33^x = 0
$$
 has
\nonly the solution $c_1=c_2=c_3=0$.
\nIf $x=0$, then $c_1+2c_2+3c_3=0$
\nIf $x=1$, then $c_1+2c_2+3c_3=0$
\nIf $x=2$, then $4c_1+4c_2+9c_3=0$.
\n $\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 4 & 9 & 0 \end{bmatrix}$ $\begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{matrix}$
\nThus, $c_1=c_2=c_3$ is the unique solution.