Math 314

Midterm 1

Fall 2022

Name: _____

Rules:

You have one hour to complete the exam.

Partial credit will be awarded, but you must show your work.

You may have a single handwritten sheet of notes.

Except for problem 1, you may use technology to find the reduced echelon form of a matrix or to multiply matrices.

Turn off anything that might go beep during the exam.

Good luck!

Problem	Possible	Score
1	10	
2	10	
3	25	
4	20	
5	20	
6	15	
Extra Credit	5	
Total	100	

1. (10 points) Find the product AB for the matrices below, by hand.

$$A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & -1 & 4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 5 & 1 \\ -3 & 0 & 0 & 1 \end{pmatrix}$$

2. (10 points) Let
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 2 & -1 & 4 \end{pmatrix}$$
. Demonstrate how 10 find A^{-1} .

3. (25 points) Let
$$h : \mathcal{P}_2 \to \mathbb{R}^3$$
 by $h(ax^2 + bx + c) = \begin{pmatrix} a \\ a + c \\ 2c \end{pmatrix}$ is a linear map.

(a) Show that h respects scalar multiplication.

(b) Find the image of $x^2 + 4x - 2$ under *h*.

(c) Is
$$\begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}$$
 in the range of *h*? Justify your answer.

... continued on next page

... continued from the previous page

Recall that
$$h: \mathcal{P}_2 \to \mathbb{R}^3$$
 by $h(ax^2 + bx + c) = \begin{pmatrix} a \\ a+c \\ 2c \end{pmatrix}$.

(d) Determine the null space of *h*.

(e) Determine the rank of *h* by finding a basis for the range space of *h*.

(f) Is *h* an isomorphism? Explain.

4. (20 points) Let $h : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear map with matrix representation $H = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$ (with respect to \mathcal{E}_2 in both domain and codemain)

(with respect to \mathcal{E}_3 in both domain and codomain) (1/2, 1/2, 0)

It is a fact that
$$H^{-1} = \begin{pmatrix} 1/2 & 1/2 & 0\\ 0 & 1 & 1/2\\ 0 & 0 & 1/2 \end{pmatrix}$$
.
(a) Find $h \begin{pmatrix} -1\\ 3\\ 2 \end{pmatrix} \end{pmatrix}$

(b) Find the inverse image of
$$\begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$$
 or state that it does not exist.

(c) Explain why the information given in the problem implies that the nullity of h is zero.

(d) Find the matrix representation of the linear map $h \circ h$.

(e) Is $h \circ h$ an isomorphism? Justify your answer.

5. (20 points) Let
$$B = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\rangle$$
 and let $D = \left\langle \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle$ be two bases of \mathbb{R}^2 .

(a) Write the vector
$$\vec{v} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}_{\mathcal{E}_2}$$
 with respect to basis *B*.

(b) Find $Rep_{B,D}(id)$, the change of basis matrix from basis *B* to basis *D*.

(c) Use your answer in part (b) to find $rep_D(\vec{v})$.

- 6. (15 points) Short Answer
 - (a) Let *M* be a 5×7 matrix with rank 3 that represents a linear transformation *h* from vector space *V* to vector space *W*. Fill in the blanks:
 - The dimension of *V* is _____
 - The dimension of *W* is _____
 - The dimension of the range of *h* is _____
 - The dimension of the null space of *h* is ______
 - (b) Assume $h : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map such that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. Find the image of the vector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$.

(c) Assume *A* is a singular $n \times n$ matrix that represents a linear map from \mathbb{R}^n to \mathbb{R}^n . Can there exist a vector \vec{w} in the codomain that fails to be the image of any vector in the domain? Explain your reasoning.

(d) Assume $h : V \to W$ is a one-to-one linear transformation from vector space V to vector space W and has matrix representation H. Can you conclude that the columns of H are linearly independent? Explain.

Extra Credit (5 points) In problem 4, the matrix $H = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$ was the representation of a linear transformation *h*. Find the matrix representation of *h* with respect to the basis $B = \langle \vec{e_2}, \vec{e_3}, \vec{e_1} \rangle$ (i.e. a re-ordering of the standard basis).

10