_____/ 10

Name: ____

There are 10 points possible on this quiz. No aids (book, calculator, etc.) are permitted. **This is a short-answer quiz.**

Questions below concern matrices A, B, C and D below.

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 0 & -4 \end{pmatrix} C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix}, D = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$

1. (1 point) Find A + 3D

$$A+3D = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 3 \\ 6 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 8 & 3 \end{pmatrix}$$

2. (2 points) Find the product *BA*.

$$\begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 5 & 5 \\ -8 & -12 \end{pmatrix}$$

3. (2 points) Find a 3×3 matrix *M* such that the resulting product *MC* corresponds to the row operation: $r_3 - 2r_1 \mapsto r_3$.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ -4 & 2 & 1 \end{pmatrix}$$

4. (4 points) Find C^{-1} .

$$\begin{pmatrix} 2 & 0 & 0 & | & 0 & 0 \\ 0 & | & 1 & | & 0 & 1 & 0 \\ 0 & 2 & 3 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & | & 0 & | & 0 & 3 & -1 \\ 0 & 0 & | & 0 & -2 & 1 \end{pmatrix}; C^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -2 & 1 \end{pmatrix}$$

5. (1 point) Change $\stackrel{\circ ne}{\searrow}$ entry in \mathcal{A} such that the resulting matrix has no inverse.

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}; \text{ change to } \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$$