1. **Theorem 1:** The determinant of an $n \times n$ matrix *A* can be computed by cofactor expansion across any row or down any column where the signs of the cofactors are determined by the figure below:

 $\begin{bmatrix} + & - & + & - & \cdots \\ - & + & - & + & \cdots \\ + & - & + & - & \cdots \\ \vdots & & & \ddots \end{bmatrix}$

- 2. **Theorem 2:** The determinant of a triangular matrix is the product of the entries on the main diagonal.
- 3. **Theorem 3:** (How Row Operations Change the Determinant) Let *A* be a square matrix.
 - If matrix *B* is obtained by adding a multiple of one row of *A* to another row of *A*, then, det(B) = det(A).
 - If matrix *B* is obtained by **interchanging two rows of** *A*, then, det(B) = -det(A).
 - If matrix *B* is obtained by **multiplying a rows of** *A* by the constant *k*, then, $det(B) = k \cdot det(A)$.
- 4. **Theorem 4:** A square matrix *A* is invertible if and only if $det(A) \neq 0$.
- 5. Theorem 5: If A is a square $n \times n$ matrix, then $det(A) = det(A^T)$.
- 6. **Theorem 6:** If *A* and *B* are square matrices, then $det(AB) = det(A) \cdot det(B)$.

Examples of Properties of the Determinant

Let
$$A = \begin{pmatrix} 2 & 0 & 5 \\ 0 & 1 & 3 \\ -1 & 0 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 8 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 4 \end{pmatrix}$

1. Find det(A) by expanding along row 1 and along column 2.

2. Find det(B)

3. Let *C* be obtained from *A* by (i) exchanging rows 1 and 3 followed by (ii) adding 2*row 1 to row 3. Find det(A).

4. Find D = BA and find det(D) two ways.