SECTION 2.3.3: VECTOR SPACES AND LINEAR SYSTEMS
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6. Theorem: For any matrix, what is the relationship between row rank and cqlumn rank of matrices?
They are egual | row rank (A)= col rank

7. definition The rank of a matrixis ) rank- or rew rank.
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8. Theorem: For linear systems with n unknowns and with coefficient matrix A the following state-
ments are equivalent.
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9. Corollary: For the n x n matrix A4, the following are equivalent.
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