SECTION 3.3.1: REPRESENTING LINEAR MAPS WITH MATRICES

1. The Big Idea: A linear map between vector spaces can always be described as a matrix which can
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be used to find the image of vectors using the matrix-vector product. (a thinking-free automation)

. The Big Idea in a formal way:
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Let f : V. — W be a linear map between vector spaces V and W with bases B = (b1, by, - - ,b;),
(for V of dimension n) and D = (dy,ds, - - - ,dy,), (for W of dimension m).

Then the matrix M representing the linear map has dimensions ¥}, X N

with columns formed as follows
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The image of a vector v € V' can be found by
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3. Fact we will use: Any linear map f : V' — W between vector spaces can be determined by
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4. Example: f : R3 — R? All O‘C g
A O () N ./ is 6iw;n:l5
bases:B:<b1-_ 1]1,2={(2],b5=|1 >andD:<d1: <0>,d2:< 1>>
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image of basis vectors: f(by) = ( 11>, fba) = (g), f(bs) = <8>
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3 (a) Find the image of v under f and express its image with respect to the basis D via actual
thinking...
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@ANSWER : (\".SFD (‘CC@ = (3 .
(b) Find the image of v under f and express its image with respect to the basis D via automation. L
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