SECTION 3.3.1: REPRESENTING LINEAR MAPS WITH MATRICES

- 1. The Big Idea: A linear map between vector spaces can always be described as a matrix which can be used to find the image of vectors using the matrix-vector product. (a thinking-free automation)
- 2. The Big Idea in a formal way:

Let $f: V \to W$ be a **linear map** between **vector spaces** V and W with **bases** $B = \langle \vec{b_1}, \vec{b_2}, \cdots, \vec{b_n} \rangle$, (for V of dimension n) and $D = \langle \vec{d_1}, \vec{d_2}, \cdots, \vec{d_m} \rangle$, (for W of dimension m).

Then the matrix M representing the linear map has dimensions

with columns formed as follows

The image of a vector $\vec{v} \in V$ can be found by

3. Fact we will use: Any linear map $f: V \to W$ between vector spaces can be determined by

4. Example: $f : \mathbb{R}^3 \to \mathbb{R}^2$

bases:
$$B = \left\langle \vec{b_1} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \vec{b_2} = \begin{pmatrix} 0\\2\\0 \end{pmatrix}, \vec{b_3} = \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\rangle$$
 and $D = \left\langle \vec{d_1} = \begin{pmatrix} 1\\0 \end{pmatrix}, \vec{d_2} = \begin{pmatrix} -1\\-1 \end{pmatrix} \right\rangle$

image of basis vectors: $f(\vec{b_1}) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $f(\vec{b_2}) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, $f(\vec{b_3}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

(a) Find the image of $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ under *f* and express its image with respect to the basis *D* via actual thinking...

(b) Find the image of $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ under *f* and express its image with respect to the basis *D* via automation.