SECTION 3.3.2: ANY MATRIX REPRESENTS A LINEAR MAP

1. The Big Idea from 3.3.1: A linear map between vector spaces can always be described as a matrix
which can be used to find the image of vectors using the matrix-vector product. (a thinking-free

automation)
L 0 0 -1 : 0
2. Review Example: h: R - R?by h | |0] | = [ ], Al (L] | = [ ], (1] | = [ } . Assume
1 0 0
0 0 1
1 0 1
the basis for R*is B = ([0|, |1], |1|) and & for R?. Find rep 5 &, (h) and use it to find the image
0 0 1

of ¥ = [1,2,3].
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3. The Big Idea from 3.3.2: Given any m x n matrix M, we can view M as a linear map between two
vector spaces V — W of dimensions n, and wr \.uu;u-l-tB with respect to any pair of bases.
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4. Simple Example: Let M =
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5. Let M be an m x n matrix representing the linear map h : V' — W, for vector spaces V' and W of
dimensions n and m respectively. (There is an underlying assumption that bases for V" and W are
known.)

(a) Theorem 2.4: Rank of M = rank of h
Ry call +hot 1ok of b= dimension oF +he range space.
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(b) Corollary 2.6
e hisontoifand only if rank of M is m = Jim(W) .
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(c) Lemma 2.9: h is an isomorphism if and only of M is mns;nﬁujq}".
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6. Give examples of singular and nonsingular homomorphisms from R? — R3.
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