- 1. The Big Idea from 3.3.1: A linear map between vector spaces can always be described as a matrix which can be used to find the image of vectors using the matrix-vector product. (a thinking-free automation)
- 2. Review Example: $h : \mathbb{R}^3 \to \mathbb{R}^2$ by $h\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}, h\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\0\end{bmatrix}, h\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}0\\0\end{bmatrix}$. Assume

the basis for \mathbb{R}^3 is $B = \langle \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \rangle$ and \mathcal{E}_2 for \mathbb{R}^2 . Find $\operatorname{rep}_{B,\mathcal{E}_2}(h)$ and use it to find the image of $\vec{v} = \begin{bmatrix} 1, 2, 3 \end{bmatrix}$.

3. The Big Idea from 3.3.2: Given any $m \times n$ matrix M, we can view M as a linear map between two vector spaces $V \to W$ of dimensions with respect to any pair of bases.

4. Simple Example: Let
$$M = \begin{bmatrix} 1 & 3 \\ 0 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}$$
.

- 5. Let *M* be an $m \times n$ matrix representing the linear map $h : V \to W$, for vector spaces *V* and *W* of dimensions *n* and *m* respectively. (There is an underlying assumption that bases for *V* and *W* are known.)
 - (a) **Theorem 2.4:** Rank of M = rank of h

**Revisit example in #4

- (b) Corollary 2.6
 - *h* is onto if and only if rank of *M* is
 - *h* is one-to-one if and only if rank of *M* is

(c) Lemma 2.9: *h* is an isomorphism if and only of *M* is

6. Give examples of singular and nonsingular homomorphisms from $\mathbb{R}^3 \to \mathbb{R}^3$.