- 1. **Definition 1.3** Let *A* and *B* be $m \times n$ matrices, $r \in \mathbb{R}$. Then the operations of scalar multiplication $(r \cdot A)$ and matrix addition (A + B) are performed componentwise.
- 2. **Example:** Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 3 & -1 \\ 4 & 1 & 1 \end{bmatrix}$. Find $10 \cdot A$ and A + B.

 $IOA = IO \cdot \begin{bmatrix} I - I & 2 \\ 2 & 0 & 5 \end{bmatrix} = \begin{bmatrix} IO & -IO & 2O \\ 20 & 0 & 5O \end{bmatrix}, \quad A + B = \begin{bmatrix} I + O & -I + 3 & 2 - I \\ 2 + 4 & O + 1 & 5 + 1 \end{bmatrix} = \begin{bmatrix} I & 2 & I \\ G & I & G \end{bmatrix}$

- 3. Thm 1.4: If $f: V \to W$ and $g: V \to W$ are linear maps such that $rep_{B,B'}(f) = A$ and $rep_{B,B'}(g) = C$, then
 - the linear map $r \cdot f$ where r is a scalar can be represented as $\mathbf{r} \cdot \mathbf{A}$
 - the linear map f + g can be represented as A + B
- 4. **Example:** Let *f* and *g* be linear maps from \mathbb{R}^2 to \mathbb{R}^2 such that their representation with respect to \mathcal{E}_2 is given by $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 3 \\ 4 & 1 \end{bmatrix}$. Find $(f+g) \left(\begin{bmatrix} 2 \\ -5 \end{bmatrix} \right)$ two ways:

(a) Finding
$$f(\begin{bmatrix} 2\\ -5 \end{bmatrix})$$
 and $g(\begin{bmatrix} 2\\ -5 \end{bmatrix})$ and adding the resulting vectors

$$f(\begin{bmatrix} 2\\ -5 \end{bmatrix}) = \begin{bmatrix} 1 & -1\\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2\\ -5 \end{bmatrix} = \begin{bmatrix} 2 + 5\\ 4 + 0 \end{bmatrix} = \begin{bmatrix} 4\\ 4 \end{bmatrix}$$
So $f(\begin{bmatrix} 2\\ -5 \end{bmatrix}) + g(\begin{bmatrix} 2\\ -5 \end{bmatrix})$

$$g(\begin{bmatrix} 2\\ -5 \end{bmatrix}) = \begin{bmatrix} 0 & 3\\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2\\ -5 \end{bmatrix} = \begin{bmatrix} 0 & -15\\ 8 & -5 \end{bmatrix} = \begin{bmatrix} -15\\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 7\\ 4 \end{bmatrix} + \begin{bmatrix} -15\\ 3 \end{bmatrix} = \begin{bmatrix} -8\\ 7 \end{bmatrix}$$

(b) Finding $A + B = C$ and using C .

$$C = A + B = \begin{bmatrix} 1+0 & -1+3\\ 2+4 & 0+1 \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 6 & 1 \end{bmatrix}$$
The same $\begin{bmatrix} 1\\ -5 \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ 6 & 1 \end{bmatrix}$

$$f(=2) = \begin{bmatrix} 1\\ 2\\ 6 & 1 \end{bmatrix} = \begin{bmatrix} 12+2(-5)\\ 6\cdot 2+1(-5) \end{bmatrix} = \begin{bmatrix} -8\\ 7 \end{bmatrix}$$