1. **Definition 1.3** Let *A* and *B* be $m \times n$ matrices, $r \in \mathbb{R}$. Then the operations of scalar multiplication $(r \cdot A)$ and matrix addition (A + B) are performed componentwise.

2. **Example:** Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 3 & -1 \\ 4 & 1 & 1 \end{bmatrix}$. Find $10 \cdot A$ and $A + B$.

- 3. Thm 1.4: If $f: V \to W$ and $g: V \to W$ are linear maps such that $rep_{B,B'}(f) = A$ and $rep_{B,B'}(g) = C$, then
 - the linear map $r \cdot f$ where r is a scalar can be represented as
 - the linear map f + g can be represented as
- 4. **Example:** Let *f* and *g* be linear maps from \mathbb{R}^2 to \mathbb{R}^2 such that their representation with respect to \mathcal{E}_2 is given by $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 3 \\ 4 & 1 \end{bmatrix}$. Find $(f+g) \left(\begin{bmatrix} 2 \\ -5 \end{bmatrix} \right)$ two ways:

(a) Finding $f(\begin{bmatrix} 2\\-5 \end{bmatrix})$ and $g(\begin{bmatrix} 2\\-5 \end{bmatrix})$ and adding the resulting vectors

(b) Finding A + B = C and using C.