SECTION ONE.III.2: LINEAR COMBINATION LEMMA

Definition: A linear combination of $x_1, x_2, \cdots x_n$ is

Definition: A linear combination of vectors $\overline{u}_1, \overline{u}_2, \cdots \overline{u}_n$ is

Example: Write three distinct linear combination of the vectors $\overline{u}_1 = (1, 2, 3)$ and $\overline{u}_2 = (1, -1, 1)$. **Example:** Is $\overline{v} = (2, -1, 2)$ a linear combination of $\overline{u}_1 = (1, 2, 3)$ and $\overline{u}_2 = (1, -1, 1)$?

Example: Do two steps of Gauss-Jordan reduction on the matrix below but record the steps as linear combinations of rows.

[1]	2	1]
-1	2	0
3	0	8

True or False

If the matrix *B* is the reduced row echelon form of matrix A, then the rows of *B* are linear combinations of the rows of *A*.

In echelon form, no nonzero row can be a linear combination of any of the other nonzero rows.