SECTION TWO.I.1: VECTOR SPACES (CONT.)

We (or the book) proved that the following are vector spaces:

- $V_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : y = 2x \right\}$ under regular vector addition and scalar multiplication.
- $V_2 = \{f : \mathbb{R} \to \mathbb{R} : f(x) + 3f'(x) = 0\}$ under regular function addition and scalar multiplication.
- $V_3 = \{a_2x^2 + a_1x + a_0 : a_2, a_1, a_0 \in \mathbb{R}\}$ under regular polynomial addition and scalar multiplication.

Explain why the following examples are *not* vector spaces. Try to find as many reasons as you can.

1.
$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : y = x + 2 \right\}$$
 under regular vector addition and scalar multiplication.

2. $V = \{f : \mathbb{R} \to \mathbb{R} : f(x) + 3f'(x) = 1\}$ under regular function addition and scalar multiplication.

3. $V = \{a_2x^2 + a_1x + a_0 : a_2, a_1, a_0 \in \mathbb{Z}\}$ under regular polynomial addition and scalar multiplication. The symbol \mathbb{Z} denotes all integers: ... -2, -1, 0, 1, 2, 3, 4, ... **Lemma 1.16** In any vector space *V* and for any $\vec{v} \in V$ and $r \in \mathbb{R}$,

SECTION TWO.I.2: SUBSPACES AND SPANNING SETS

Definition:

Example: Let $V = \mathbb{R}^3$, the vector space of 3-dimensional real-valued vectors under the usual vector and scalar operations. Let $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y - z = 0 \right\}$. Show *W* is a subspace of *V*.