SECTION TWO.I.1: VECTOR SPACES

Example: Do Gauss-Jordan reduction on the matrix below but record the steps as linear combinations of rows.

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 0 \\ 3 & 0 & 8 \end{bmatrix} \xrightarrow{r_1 + r_2 \mapsto r_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 1 \\ 3 & 0 & 8 \end{bmatrix} \xrightarrow{r_3 - 3r_1 \mapsto r_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 1 \\ 0 & -6 & 5 \end{bmatrix} \xrightarrow{r_3 + \frac{3}{2}r_2 \mapsto r_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & \frac{13}{2} \end{bmatrix}$$

$$\begin{bmatrix} \vec{r_1} \\ \vec{r_2} \\ \vec{r_3} \end{bmatrix} \xrightarrow{r_1 + r_2 \mapsto r_2} \begin{bmatrix} \vec{r_1} \\ \vec{r_1} + \vec{r_2} \\ \vec{r_3} \end{bmatrix} \xrightarrow{r_3 - 3r_1 \mapsto r_3} \begin{bmatrix} \vec{r_1} \\ \vec{r_1} + \vec{r_2} \\ \vec{r_3} - 3\vec{r_1} \end{bmatrix} \xrightarrow{r_3 + \frac{3}{2}r_2 \mapsto r_3} \begin{bmatrix} \vec{r_1} \\ \vec{r_1} + \vec{r_2} \\ (\vec{r_3} - 3\vec{r_1}) + \frac{3}{2}(\vec{r_1} + \vec{r_2}) \end{bmatrix}$$

Observation: Every linear combination of a 3-dimensional row vector gives a 3-dimensional row vector. Nothing bad happens.

definition A *vector space* of $\mathbb R$ consists of a set V along with two operations: + and \cdot such that for all $\vec{u}, \vec{v}, \vec{w} \in V$ and for all $r, s \in \mathbb R$ all of the following ten conditions hold:

- 1. V is closed under vector addition: For every $\vec{u}, \vec{v} \in V$, $\vec{u} + \vec{v} \in V$
- 2. Vector addition is commutative: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 3. Vector addition is associative: $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
- 4. V has an additive identity: There is some \[\begin{aligned} & \text{V} & Sothat \\ \text{U} + \begin{aligned} & \text{U} \\ \text{U} \\ \text{Sothat} & \text{U} \\ \text{U} \\ \text{Sothat} & \text{U} \\ \t
- 5. V has additive inverses: For every $\vec{u} \in V$ there is some $\vec{V} \in V$, so that $\vec{u} + \vec{v} = \square$
- 6. V is closed under scalar multiplication: For every $\Gamma \in \mathbb{R}$, $\vec{V} \in V$, $\vec{V} \in V$.
- 7. Scalar multiplication distributes over scalar addition: For all r, $s \in \mathbb{R}$, $\vec{v} \in V$,

 8. Scalar multiplication \vec{v} \vec{v}
- 8. Scalar multiplication distributes over vector addition: For all $r \in \mathbb{R}$, \vec{v} , $\vec{u} \in V$ $r(\vec{v} + \vec{u}) = r\vec{v} + r\vec{u}$
- 9. Scalar multiplication is associative: $(rS) \vec{V} = r(S\vec{V})$
- 10. The scalar number acts as a multiplicative identity:

 $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{vmatrix} x_1 + x_2 \\ y_1 + y_2 \end{vmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$

Demonstrate that the following are vector spaces.

Example 1: $V = \left\{ \begin{vmatrix} x \\ y \end{vmatrix} : y = 2x \right\}$ under regular vector addition and scalar multiplication.

(4)
$$\vec{\delta} = \begin{bmatrix} 3 \end{bmatrix}$$
, $\vec{V} + \vec{\delta} = \begin{bmatrix} \hat{y} \end{bmatrix} + \begin{bmatrix} 3 \end{bmatrix} +$

Example 2: $V = \{f : \mathbb{R} \to \mathbb{R} : f(x) + 3f'(x) = 0\}$ under regular function addition and scalar

(1)
$$f_{j}geV_{j}$$
, So $f+3f'=0$ and $g+3g'=0$.
Now $(f+g)+3(f+g)'=f+g+3(f'+g')=f+3f'+g+3g'$
So $f+a$ is in V .

(2)
$$f+g=g+f$$
 (3) (1) $f+g=g+f$ (3) $f+g=g+f$ (4) $g(x)=0$
(4) $f+g=f$? [1) is zero for $g(x)=0$
(5) $f+g=g+f$? (6) $f+g=f$? (6) $g(x)=0$