SECTION TwoO.I.1: VECTOR SPACES

Example: Do Gauss-Jordan reduction on the matrix below but record the steps as linear combinations

of rows.
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~ Observation: Every linear combination of a 3-dimensional row vector gives a 3-dimensional row
Vector. Nothing bad happens.

definition A vector space of R consists of a set V along with two operations: + and - such that for all

4, 7,4 € V and for all , s € R all of the following ten conditions hold:
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. Vector addition is associative: CL,L‘E' v
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V is closed under vector addition: Foy aver Y U, Ve v > u-tve V
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Vector addition is commutative: -+ V= v+l
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V has an additive identity: Thf/l"‘? ‘
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V is closed under scalar multiplication: F oY Q%@f\‘j € m , V év (-VE V.-

Scalar multiplication distributes over scalar addition: FOV ‘5“ ( $€ R) ‘Vf ¢ v
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Scalar multiplication distributes over vector addition: -F@v* @\ﬁ ¢ ﬁ\% )
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Scalar multiplication is assomatwe
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The scalar numbel;‘ acts as a multiplicative identity:
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Example 1: V = m Yy =2z und gul ector addition and scalar multiplication.

; xz [\Hz,] _shllin V.
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Emplzv {(f :R = R : f(z)+3f(z) = 0} under regular function addition and scalar
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