SECTION TwO.I.1: VECTOR SPACES

Example: Do Gauss-Jordan reduction on the matrix below but record the steps as linear combinations
of rows.
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Observation: Every linear combination of a 3-dimensional row vector gives a 3-dimensional row
vector. Nothing bad happens.

definition A vector space of R consists of a set V' along with two operations: + and - such that for all
u,v,w € V and for all r, s € R all of the following ten conditions hold:

1. V is closed under vector addition:

2. Vector addition is commutative:

3. Vector addition is associative:

4. V has an additive identity:

5. V has additive inverses:

6. V is closed under scalar multiplication:

7. Scalar multiplication distributes over scalar addition:

8. Scalar multiplication distributes over vector addition:

9. Scalar multiplication is associative:

10. The scalar number acts as a multiplicative identity:
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Demonstrate that the following are vector spaces.

Example 1: V = { B] Ly = 237} under regular vector addition and scalar multiplication.

Example 2: V = {f : R - R : f(z) + 3f'(z) = 0} under regular function addition and scalar
multiplication.
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