Example Again: Let $V = \mathbb{R}^3$, the vector space of 3-dimensional real-valued vectors under the usual vector and scalar operations. Let $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y - z = 0 \right\}$. Show *W* is a subspace of *V*.

Lemma 2.9: *V* is a vector space. *S* is a nonempty subset of the set *V*. The following are equivalent.

definition: Let *S* be a nonempty subset of the vector space *V*. The *span of S* (or [S] or *linear closure of S*) is

Sample Problems

1. Let $S = \{(1, 1, 0), (0, 1, 0)\}$ be a subset of \mathbb{R}^3 , the vector space of all real-valued 3-vectors under the usual vector addition and scalar multiplication. Which of the vectors below are in span(S)? (Show your work.)

$$\vec{v} = (8, -10, 0)$$

 $\vec{w} = (1, 2, 3)$

$$\vec{x} = (a, b, 0)$$

2. How would you know if the set

$$T = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} \right\}$$

spanned the set of all 2×2 matrices?

Lemma 2.15: