SECTION TWO.I.2: LINEAR INDEPENDENCE

- 1. Below are several *subsets* of $V = \mathbb{R}^3$. Which ones span \mathbb{R}^3 ? Are some more efficient than others?
 - (a) $A = \{(1,1,0), (0,1,0)\}$
 - (b) $B = \{(1,0,0), (0,1,0), (0,0,1)\}$
 - (c) $C = \{(1,0,0), (0,1,0), (0,0,1), (1,1,0)\}$
 - (d) $D = \{(0, 1, 0), (0, 0, 1), (1, 1, 0)\}$
- 2. **Definition:** Let *S* be a subset of the vectors in the vector space *V*. We say *S* is **linearly independent** if

3. Determine if the set $T = \{\vec{u} = (1, 2, 0), \vec{v} = (1, 1, 1), \vec{w} = (1, 3, -1)\}$ of vectors in \mathbb{R}^3 are linearly independent.

4. Determine if the set $S = \{\vec{s_1} = (1, 2, 1, 1), \vec{s_2} = (1, 1, 1, 1), \vec{s_3} = (3, 4, 0, -1), \vec{s_4} = (0, 8, -1, 4)\}$ of vectors in \mathbb{R}^4 are linearly independent.

Lemma 1.5 $S = {\vec{s_1}, \vec{s_2}, \vec{s_3}, \cdots, \vec{s_n}}$ is a subset of the vector space V.

S is linearly independent

5. *V* is a vector space and $S \subseteq V$, $\vec{v} \in V$. What can you conclude if $[S \cup {\vec{v}}] = [S]$? Can your reverse this implication?

6. *V* is a vector space and $S \subseteq V$, $\vec{s} \in S$. What can you conclude if $[S - {\vec{s}}] = [S]$? Can you reverse this implication?

7. Let *S* be a subset of the vector space *V*. If, for every $\vec{v} \in S$, $[S - \vec{v}] \neq [S]$ (that is, the subspace $[S - \vec{v}]$ is smaller than the space [S]), what can you conclude about *S*? Does the reverse implication still hold?