SECTION TWO.III.1: BASIS

- 1. (Warm-up) Let $S \subset V$ where V is a vector space and $S = \{\vec{s_1}, \vec{s_2}, \cdots, \vec{s_n}\}$.
 - (a) What can you say about the relationship between the objects $[S \{\vec{s_i}\}]$, [S], and V?
 - (b) What can you conclude if $[S \{\vec{s_i}\}] \neq [S]$ for every $\vec{s_i} \in S$?

2. **Definition:**

3. Which of the following sets form a *basis* for \mathbb{R}^3 ? (Note: These are the same sets of vectors from Monday's sheet.)

(a)
$$A = \langle (1, 1, 0), (0, 1, 0) \rangle$$

(b)
$$B = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$$

(c)
$$C = \langle (1,0,0), (0,1,0), (0,0,1), (1,1,0) \rangle$$

(d)
$$D = \langle (0,1,0), (0,0,1), (1,1,0) \rangle$$

4.	Write the	vector with	coordinates	(1, -2, 3)	3) using	each b	asis be	elow:

(a)
$$B_1 = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$$

(b)
$$B_2 = \langle (0,1,0), (0,0,1), (1,1,0) \rangle$$

(c)
$$B_3 = \langle (1,1,0), (0,1,0), (0,0,1) \rangle$$

5. Write the vector $1 - 2x + 3x^2$ with respect to the basis $B = \langle 1, x, x - x^2 \rangle$.