1. For every polynomial of degree 2or 3 in \mathbb{Z}_2 (see the table below), either factor it completely or state that it is irreducible.

polynomial	factored form	zeros
x^2	$x \cdot x$	x = 0
$x^2 + x$		
$x^2 + 1$		
$x^2 + x + 1$		
x^3		
$x^3 + x^2$		
$x^3 + x^2 + x$		
$x^3 + x^2 + 1$		
$x^3 + x^2 + x + 1$		
$x^{3} + x$		
$x^3 + x + 1$		
$x^3 + 1$		

2. Prove or Disprove: For every $n \in \{1, 2, 3, 4, 5\}$ there exists a polynomial p(x) of degree *n* with more than *n* distinct zeros in \mathbb{Z}_6 .

degree	polynomial	zeros
1		
2		
3		
4		
5		

- 3. Let $I = \langle x^3 + 2x^2 \rangle$ be an ideal in $\mathbb{Q}[x]$.
 - (a) List 5 distinct elements of $\mathbb{Q}[x]$ that are in *I*, list 5 distinct elements of $\mathbb{Q}[x]$ that are **not** in *I*, and then describe in words or symbols what the ideal *I* looks like.
 - (b) Is *I* a maximal ideal? Justify your answer.
- 4. Suppose f(x) is irreducible in F[x], where F is a field. Prove that for every nonzero polynomial $g(x) \in F[x]$, either gcd(f(x), g(x)) = 1 or f(x) | g(x).
- 5. (a) Rewrite Fermat's Little Theorem as stated in your text book.
 - (b) Show that Fermat's Little Theorem applies for n = 5, by explicitly calculating a^4 for every $a \in \{1, 2, 3, 4\}$ and checking that each is congruent to 1.

- (c) Explain what Fermat's Little Theorem implies about factorizations of $x^p x$ in $\mathbb{Z}_p[x]$ where p is a prime. Prove that your assertion is correct.
- 6. Show that $\alpha = \sqrt{5} + \sqrt{3}i$ is algebraic over $\mathbb{Q}[x]$ by explicitly finding $p(x) \in \mathbb{Q}[x]$ such that $p(\alpha) = 0$.