1. For every polynomial of degree 2or 3 in \mathbb{Z}_2 (see the table below), either factor it completely or state that it is irreducible.

2. Prove or Disprove: For every $n \in \{1, 2, 3, 4, 5\}$ there exists a polynomial $p(x)$ of degree *n* with more than *n* **distinct** zeros in \mathbb{Z}_6 .

- 3. Let $I = \langle x^3 + 2x^2 \rangle$ be an ideal in $\mathbb{Q}[x]$.
	- (a) List 5 distinct elements of $\mathbb{Q}[x]$ that are in *I*, list 5 distinct elements of $\mathbb{Q}[x]$ that are **not** in *I*, and then describe in words or symbols what the ideal *I* looks like.
	- (b) Is *I* a maximal ideal? Justify your answer.
- 4. Suppose $f(x)$ is irreducible in $F[x]$, where F is a field. Prove that for every nonzero polynomial $g(x) \in F[x]$, either $gcd(f(x), g(x)) = 1$ or $f(x) | g(x)$.
- 5. (a) Rewrite Fermat's Little Theorem as stated in your text book.
	- (b) Show that Fermat's Little Theorem applies for $n = 5$, by explicitly calculating $a⁴$ for every $a \in \{1,2,3,4\}$ and checking that each is congruent to 1.
- (c) Explain what Fermat's Little Theorem implies about factorizations of $x^p x$ in $\mathbb{Z}_p[x]$ where *p* is a prime. Prove that your assertion is correct.
- 6. Show that $\alpha =$ √ $5+$ $\sqrt{3}i$ is algebraic over $\mathbb{Q}[x]$ by explicitly finding $p(x) \in \mathbb{Q}[x]$ such that $p(\alpha) = 0$.